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1 Review of Linear Algebra

Theorem 1.1 (QR Factorization). Prove the following results for Gram-Schmidt orthogonalization
1. rj; #0 foralli=1,...,n
2. lailly =1 foralli=1,...,n
3. q]q;=0forali=1,...,n and j <i.

Proof. Part 1: Since each q; is a linear combination of {ai,--- ,a;}, the entry r;; is zero means
j—1
rjj =& = > riudi| =0,
i=1 2
then a; must be a linear combination of {a;,---,a;_1}, which validates the full rank assumption on A.

Part 2: Just use the expression of 7;;.
Part 3: Recall that r;; = q, a; for any i # j. We can verify

qai (a2 —r2q1) _ af (a2 — (afa)q1) _ qf @ — (qfaz)af
722 T22 T22

al g2 = =0

Suppose for q; q; =0 for all q/ q; =0 for all i = 1,...,n' — 1 and j < i. Then for all k =1,2,...,n/ — 1,
we have

T n'—1 T T T T
Ay — Y i1 Tin'Op Qi O an — Thp'dy Ak Oy An — Thp!

q;qn/ = =0
Tn/n’ Tn'n’/ T'n/n/
Then we prove the result by induction. O
Theorem 1.2. Prove |A|, = o1.
Proof. Let A =UXV" be full SVD of A. Then
|All, = sup ||Ax|, = sup HUEVTtz = sup HEVTXH2
x|[;=1 lIxll,=1 x|[;=1
Then let y = V 'x. Since V is orthogonal matrix, we have [ly||, = HVTXH2 = |Ix||, = 1. Hence,
T
sup ||§JVTXH2 = sup ||Zy|,= sup Z(Uiyi)Q < oy.
IIxllz=1 lyll,=1 Iyll,=1 "\ =1
1 1
0
We attain the maximum by taking y = | .| and the corresponding x is V | . O
0 0



Theorem 1.3 (Cholesky Factorization). The symmetric positive-definite matriz A € R™*™ has the decom-
position of the form

A=LL"
where L € R*™ is a lower triangular matriz with real and positive diagonal entries.
Proof. For n =1, it is trivial. Suppose it holds for n — 1, then any A € R(=Dx(n=1) can be written as
A—ILT
where L € R(v=1D*(n=1) g 4 lower triangular matrix with real and positive diagonal entries. Consider the
case of n such that

A ELT
A= al = 4 eR™", wherea e R™!, acR.
al « a' «
Let
Ll o
L, = c R™",
0 1
We have
L' o| [LLT LT o I b .
L7'AL] T = & — | 7| 2£BeR™ wherebeL lacR".
0 1 a' « 0 1 b o
Let
I 0
L — eRan.
2T b7 1
Then

N I ofl[1 bl[1 -b| I 0
2 2 7 |=bT 1| |b"T «allo 1] |0 a-bTb|’

Since A is positive-definite, we have
a—-b'b=a-a'L 'L 'a=a—-a L 'L 'a=a—a'A'a>0.

Let a — bTb = A2, where A > 0. Hence, we have

I 0 T I 0

0 a—bTb =L3sL;, whereLs= 0 A\
which means A = LLT € R™*" where L = L;LsL3 € R™*" is a lower triangular matrix with real and
positive diagonal entries. O

Theorem 1.4. Suppose V2f(x) is continuous in an open neighborhood of x* and that Vf(x*) = 0 and
V2f(x*) = 0. Then x* is a strict local minimizer of f.

Proof. Because the Hessian is continuous and positive definite at =*, we can choose a radius r > 0 so that
V2 f(x) remains positive definite for all x in the open ball D = {z : ||z — x*||, < r}. Taking any nonzero
vector p with ||p||, < r, we have x* + p € D and so

fx*+p)=fx)+p V(") + %pTVQf(Z)p = f(x*) + %pTsz(Z)p,

where z = x*+tp for some t € (0,1). Since z € D, we have p' V2f(z)p > 0, and therefore f(x*+p) > f(x*),
giving the result. O



Theorem 1.5. Suppose x* is a local minimizer of twice differentiable f(x) and V2 f(x) is continuous in an
open neighborhood of x*, then V2 f(x*) = 0 and V2f(x*) = 0.

Proof. Suppose for contradiction that Vf(x*) # 0. Define the vector p = —V f(x*), which leads to that
p' Vf(x*) < 0. Because Vf is continuous near x*, there is a scalar T > 0 such that

p'Vf(x*+1tp) <0,
for all for any t € [0,7]. We have by Taylor’s theorem that
f(x* +1p) = f(x*) +Ip" Vf(a" +tp),

for some ¢ € (0,¢). Therefore, f(z* 4 tp) < f(z*) for all t € (0,T]. We have found a direction leading away
from x* along which f decreases, so #* is not a local minimizer, and we have V2 f(x) = 0.

For contradiction, assume that V2 f(x*) is not positive semidefinite. Then we can choose a vector p such
that p' V2f(x*)p < 0. Because V2f(x) is continuous near x*, there is a scalar 7' > 0 such that

p'V2f(x* +tp)p <0

for all ¢ € [0,T]. By doing a Taylor series expansion around z*, we have for all ¢ € (0, T and some ¢ € (0,?)
that

Pp V2 (x* +tp)i®p < f(x").

N =

f(x*+1p) = f(x) +1p"Vf(x") +
We have found a direction from x* along which f is decreasing, and so again, x* is not a local minimizer. [

Theorem 1.6. Given A € R™*"™ and b € R™, the solution of minimization problem

. S 1 2
min f(x) = 5 [|Ax — bl

is x = Atb + (I — ATA)y, where y € R

Proof. The Hessian of f(x) is AT A = 0, which means f(x) is convex. Let A = U, X, V,| be the condense
SVD, where r is the rank of A. Since Vf(x) = ATAx — ATb, we only needs to solve the linear system

ATAx—A'b=0.
We denote the solution of ATAx — ATb =0 be
X={x:ATAx-ATb=0}.
We can verify that x = Afb + (I — ATA)y is the solution of the linear system because
ATAX—A"b
=ATA(ATb+(I—-ATA)y) - Ab
=AT(AAT-TI)b+ ATA(I-ATA)y
=V,%, U/ (U,%,V V.2 U -)b+V,%,U/U,=V I-V,.2'U/UEV])y
=V,%, U/ (U, U -Db+V, 22V (I-V,V])y
=V,%,. (U -U)b+V, 22 (V] -V])y
=0.

Hence, we have X} C X, where X} = {x:x=ATb+ (I- ATA)y, y e R"}.
We also have

ATAx—A'b=0



=V, 22V x -V, 2, U'b=0
=¥V x -3, U/b=0
—=V!x=3U"b
=V, V! x=V, I 'U'b
—x-(I-V,V])x=Ab
—=x=Ab+(1-V,V])x

Hence, we have X = {x:x = ATb+ (I-V, V] )x} C X;. In conclusion, we have X = X;. O

2 The Multivariate Normal Distributions
Statistical Independence If F(x,y) = F(x)G(y), we have

_PF(z,y)  PF(z)G(y)
floy) = oxdy — Ox0y
:dF(a:) dG(y)
dx dy
=f(2)g(y).

Flz,y) :/_yoo /_Oo f(u,v)dudv:/_: /_OO Flu)g(v) dudv

_/yoo /OO f(u,v)dudv_/; Fw) du/yoog(v) dv

Uncorrelated does not means independent Let X ~ U(—1,1) and

v — X, X>0
-X, X<0

Show X and Y are uncorrelated but they are NOT independent.

Conditional Distributions Let y; = y, yo = y + A. Then for a continuous density, the mean value
theorem implies

y+Ay
/ g(v)dv = g(y*) Ay,
Yy

where y < y* <y + Ay. We also have

y+Ay
/ Flu,v) dv = flu,y* (u) Ay,

where y < y*(u) < y + Ay. Connecting above results to

f;f Y2 f(u,v) dvdu

Y1
Y2 g(v)dv

Y1

Pr{z: <X <o |y <Y <y} =



with y; =y and yo = y + Ay, we have
Pr{z; <X <z |y <Y <y+ Ay}
f;lz f;’+Ay f(u,v)dvdu
)
2 Sy (@) Ay du ®
9(y*)Ay

Pyt @) G
w 9W)

For y such that g(y) > 0, we define Pr{z; < X < 25| Y = y}, the probability that X lies between z; and
X, given that Y is y, as the limit of (1) as Ay — 0. Thus

Pr{x1§X§x2|Y:y}=/ fg(z?z’j) du:/m2f(u|y)du. 2)

x2

Transform of Variables Let the density of Xi,...,X, be f(z1,...,2,). Consider the p real-valued
functions u : RP — RP such that

yi:ui(xl,...,gcp), iZl,...,p.

Assume the transformation u from the z-space to the y-space is one-to-one, then the inverse transformation
is u~! such that

xi:ui_l(yla"'ayp)a ’l:l,,p
Let the random variables Y7,...,Y},, be defined by
}/i:ui(Xla"'vXp)a i=1,...,p,

and the density of Y7,...,Y, be ¢g(y). Then we have

/ o(y)dy = / g (u(x)) abs(|J (x) )dx, (3)
u(Q) Q

and

where the Jacobin matrix is

[Ow 0wy Our]
dxry Oxzg Oz,
Ouy - Ouz Ouz
J(x) = dry Oxg ~ Oxm,p
Oup  Ouy Oup
L0z1  Oxe  Owmp ]

A roughly proof for above results:

e If A € RP*? and S C RP is a measurable set, then m(AS) = | det(A)|m(S). Let A = UESV ' where
U and V are orthogonal and ¥ is diagonal with nonnegative entries. Multiplying by VT doesn’t
change the measure of S. Multiplying by 3 scales along each axis, so the measure gets multiplied by
| det(3)] = | det(A)|. Multiplying by U doesn’t change the measure.



e We consider the probability of x in Q and y in u(Q2); and partition Q into {€;};. Then

/ g(y)dy
u(Q)
= Zg(u(xz'))m (u(€2))

~ Z g(u(x;))m(u(x;) + J(x:)(Q — x;))

e Consider notation €2 such that

/ /T,l /T;
Q T Tp

where z; < x}, 29 < 25,...,7, < 25, Then the notation u(f2) in the integral should consider the order
max{uy (z1),u1(x1)} max{up, () up ()}
/u(m - /rnin{ul(m,ul(xa)} - '/min{upw,up(z;,)}
By using even tinier subsets §2;, the approximation would be even better so we see by a limiting argument

that we actually obtain (3). On the other hand, we have (f is density functions of x on €; g is density
function of y on u(f2); y = u(x) means x and y = u(x) are one-to-one mapping).

/ f(x)dx = / g(y)dy = / g(u(x))abs (13 (x)[)dx.
Q u(Q) Q
Since it holds for any €, then

f(x) = g(u(x))abs(|I (x)[).

Lemma 2.1. IfZ is an m X n random matriz, D is an | X m real matriz, E is an n X ¢ real matriz, and F
is an | X q real matriz, then

E[DZE + F] = DE[Z]E + F.
Proof. The element in the i-th row and j-th column of E[DZE + F] is
E | dinzngeqi + fii| = D dinElangleg; + fis
h,g h.g
which is the element in the i-th row and j-th column of DE[Z]E + F. O
Lemma 2.2. Ify =Dx+f € R}, where D is an | x m real matriz, x € R™ is a random vector, then

Ely] = DE[x] +f and Cov[y] = DCov[x|D'.



Proof. We have

Cov(y)
=E [(y —Ely])(y —Ey])"]
=E [(Dx + f — E[DE[x] + f])(Dx + f — E[DE[x] + f]) |
=E[(Dx — DE[x])(Dx — DE[x]) ']

=E[D(x — E[x])(x — E[x]) 'D ]
=DE[(x — E[x])(x — E[x])"]D"
=DCov[x|D".

O

The Density Function of Multivariate Normal Distribution Let the spectral decomposition of A
be A = UAUT, then we take C = UA~'/2? and it satisfies CTAC = I and C is non-singular. Define
y = C7}(x — b), then

-1 /+OO.../+OO exp <1(x b)TA(xb)) dzy ... dz,
L ATTERD P
—det(C)/_Oo /_OO exp (—Zy) dy; ... dy,

i=1

N oo 1, 1,
:det(A‘f)/ / exp (—Qyp) ...exp (—2y1) dys ... dyp
—00 — 00

=det(A2)(2m)%.

Directly consider the expectation and variance of x is not easy, so we first consider the ones of y. The
relation y = C~!(x — b) means x = Cy + b and E[x] = CE[y] + b. The transformation implies the density
function of y is

1
g(y) =det(C)K exp (—Z(Cy +b—-b)TA(Cy +b— b)) dyp ... dy,
1
=det(C)K exp (—2yTCTACy) dyy ... dy,
1
=K det(C) exp (—Qy—ry> dyi ... dyp
det(C) -
:— = dy; ... d
(27)7 det (A ( 2 ; Yo S
1 P
:7( 73 exp( Z ) dy; ..
Then for each ¢ = 1,...,p, we have

+oo +o00 1 P

Elyi] p/Q/ / yiexp | =5 > uj | dun .. dy,
j=1
P

1 +oo 1 1 +oo 1
= — ——y? ) d — - d
o | Yi exp ) Yi Yi o €Xp ) y] Yi

J=1,i#j



+oo
1 1,
= yiexp ( —5U; dy; = 0.

Thus E[y] = 0 and E[x] = CE[y] + b = p implies b = p.
The relation x = Cy + b means Cov[x] = CCov[y]CT = CE[yy "|CT. For each i # j, we have

E yzy]

+oo 400 p
= p/2/ / Yiyj exp Zy dys ... dy,

!
2
+o00 ) 1 +oo 1 ) p 1 +oo 1 )
= (\/ﬂ/ Yi exp (—2%) dyi) (\/ﬂ/ Yj exXp (—2%) d?/j> H E/ exp (_21/h> dyn
—0o0 — 00 . . —00

J=1,h#i,j
=0

We also have

E[y;]
1 “+o0 +oo 1 p )
= (271')‘”/2 / [ yz exp _5 Z yh dyl dyp
o0 h=1
“+o0 p “+o00
1
2
/ exp (—yi) dyi) 11 7/ eXp< yh) dyn =1
(\/277 =1 i 21 J o

where the last step is due to

I 1,
\/7277 €xXp —§Z/h dyn

corresponds to the pdf of y;, ~ N(0,1) and

1 e 2 1 2
Vo yi exp | =5 dy;

corresponds to the variance of y; ~ N(0,1). Hence, it holds that

0, i+#J,

El(yi — Elyil)(y; — Ely;])] = {1 e
y =17
which implies ¥ = Cov[x] = CE[yy']CT = CC'. Since CTAC = I, we obtain A~! = CCT and
T=A"1'>0
Theorem 2.1. Let x ~ N,(p, X), with 3 € RP*P and 3 > 0. Then
y =Cx

is distributed according to Nj(Cu, CECT) for non-singular C € RPXP.
Proof. Let f(z) be the density of x such that

) = n( | B) = L wTe u))

1
2rpden®) P ( 2

and g(y) be the density function of y. The relation x = C~ly implies g(y) = f(u=!(y))| det(J~1(y))| with
u(x) = Cx,u '(y) =C 'y and J7'(y) = C~!. Hence, we have

g(y)



=f(C'y)|det(C™1)]

:(27T)pldet(2) o <_;(C_1y —m)'BHC Ty - u)> |det(C™Y)|
ot(C—1
:|((;7Tt)(pcjdet22) oxp <_;(y - CH)TC_TZ:—lc—l(y _ C/J,))

NCLE detl(CE—lCT) op (_;(y ~Cp)’ (€87 CT) (v - Cu)>
=n(Cu | CE7'CT),

where we use the fact

|det(C1)] 1 B 1 B 1
Vdet(E) /] det(C)2det(E) /| det(C)[det(E)[det(CT)| /] det(CZCT)|’
O
Theorem 2.2. Ifx = [z1,...,2,] have a joint normal distribution. Let
1. xW =[ay,...,2,]7,
2. x =[zg41,...,2)".

for ¢ < p. A necessary and sufficient condition for xV and x) to be independent is that each covariance
of a variable from xV) and a variable from x2) is 0.

Proof. Let

(€]

1)
X = t@)} ~N(p,X), where p= {“

and X =
u(z)} [

Y Yo
DIFTRD I

such that

[ ]
Y
—

|
=
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Th=%], =E {(Xu) — W) (x® - u(z)ﬂ_

Sufficiency (uncorrelated — independent): The random vectors x(!) and x(?) are uncorrelated means

3= [2011 2022} and X7 = [2611 2(2121} .
The quadratic form of n(x | p, X) is
(x—p) =7 (x - p)
- - [ S]]
(el )T ) )+ () )T () )

©



and we have det(X) = det(X11) det(X22). Then
n(p | %)
—;ex —1 x—p) B (x -
~ 2 det (D) p( X —a) 3 u))
1

1
— _(xD _ ONT =15 (1) (1) )
ex X X
GO p( 5( ) ( )

1 1
. _(x@ _ NIl (x(2) 4, (2) >
ex X M X 12
\/(27 )p q (18'6(222) P < 2( ) 22 ( )

=n(p® | ZW)n(p® | =),

Thus the marginal distribution of x*) is A(u(!), 31;) and the marginal distribution of x(2) is N"((?), 3.
We have prove two variables are independent.

Necessity (independent —> uncorrelated): Let 1 < ¢ < g and ¢+ 1 < j < p. The Independence
means

Tij =E [(5E7 .UZ)( Hj)]

+o0o +oo
:/_ /_ (i — pi)(zj — py) flze, ..., 2p)dar ... day

+oo +oo
:[ [ (x; — pi)(zj — )z, .. 2q) f(@gg1, .., xp)day ... dap

+oo +o0 +oo +oo
:[ [ (@i — pi) f(z1,...,zg)day . .. dzq~[ [ (x; — pj) fxge, - xp)dagyr ... dzp
=0.

O

Theorem 2.3. If x ~ N(u,X) with ¥ > 0, the marginal distribution of any set of components of x is
multivariate normal with means, variances, and covariances obtained by taking the corresponding components
of p and X, respectively.

Proof. We shall make a non-singular linear transformation B to subvectors
y =x® 1+ Bx(®

y® —x(@

leading to the components of y() are uncorrelated with the ones of y(?). The matrix B should satisfy

y" ~E[y"]) (v ~E[y?))]

0=E (
=E (x )+ Bx® —E[xM + Bx?])
(!

@ _E[x®])]

(x
=B | (xV —E[xV] + B(x® - [ 2]) (x® ~E[x))"|
=E [ - ERO) (e - BR))T] BB [ ~BE®)) 0 - B[]
221_2-1-3222

Thus B = —%,35 and yM = x) — 2 ,3'%x(3). The vector
YO _T =Zusy] [xV] _[1 -2y
Y= ly® 0 I x® |7 o I

10



is a non-singular transform of x, and therefore has a normal distribution with

E y(l) _ I 721222_21 ]E[X]_ I 721222_21 M(l) o M(l)—21222_21“(2) _ I/(l)
y@| = |o I = o I @] = e =L@

Since the transform is non-singular, we have

Cov y(l) _ —I —2122521 211 212 Il 0
y(2) _O I 221 222 —252 221 I
B DI P Y)Y R } [ I 0}
i o1 S| | -2 e I
_ (B — 21235, %2 0
i 0 Yoo

Thus y") and y(? are independent, which implies the marginal distribution of x(?) is ./\/(;4(2), 392). Because
the numbering of the components of x is arbitrary, we have proved this theorem. O

Singular Normal Distribution The mass is concentrated on a linear set S. For any x ¢ S, there exists
B(z,r) such that r > 0 and BNS = . If the distribution of = has density function f, then f(x) = 0 holds for
any x € S. Since the measure of S is zero, we have f(z) = 0 almost everywhere, which means the integration
of f(x) on the whole space is 0.

Conditional Distribution by Schur Complement Recall that

A B|] [I BD'|[A-BD!C o0 I 0
C D| |oO 1 0 D| ID7'C I’

which directly means the inverse of covariance of Normal distribution.

Theorem 2.4. Let x ~ N,(u,X). Then
z = Dx
is distributed according to Ny(Dp, DEDT) for any D € RI*P.

Proof. Tt is easy to verify E[z] = Du and Cov[z] = DXD'. Hence, we only need to show z follows normal
distribution.
Since x ~ N, (p, X), it can be presented as

x=Ay+ A
where A € RP*" | r is the rank of ¥ and y ~ N,.(v, T) with non-singular T > 0. We can write
z =DAy + DA,

where DA € R?*". If the rank of DA is r, the formal definition of a normal distribution that includes the
singular distribution implies z follows normal distribution.
If the rank of DA is less than r, say s, then

E = Cov[z] = DACov[y]A'D" = DATA'D" € R7*¢

is rank of s. There is a non-singular matrix

11



with F; € R5%? and Fy € R(¢=9)%" guch that

F,EF/ FlEFQT} {(FlDA)T(FlDA)T (FlDA)T(FgDA)T} _ [Is 0]'

T _
FEF = {FQEFI F,EF, | | (F,DA)T(F,DA)T (F,DA)T(F,DA)T| ~ |0 o

Thus (FiDA)T(F;DA)"T = I, means F;DA is of rank s and the non-singularity of T means FoDA = 0.
Hence, we have

FlDAy
FQDAy

F1 DAy

Fz' — F(DAy + DA) — [::1} DAy + FDA — { o
2

|+ 7Da~ [F0AY] L rDx

Let u; = F1DAy € R%. Since F1DA € R**" is of rank s < r, we conclude u; has a non-singular normal
distribution. Let F~1 =[Gy, G3], where G; € R7% and Gg € R2*(a=5) Then

z=F1! <|:l:)1:| + FD)\) = [Gl, GQ] |:uOl:| + DX =Gju; + DX

which is of the form of the formal definition of normal distribution. O

Theorem 2.5. For x ~ Ny,(1, £) and every vector o € RP~9) | we have

Var [x(n.z)] < Var [331 — aTx(2)],

i

(11.2)

fori=1,...,q, where x; and x; are the i-th entry of X2 and the i-th entry of x respectively.

Proof. We denote
Bl
B=|:
B
Since x11-?) is uncorrelated with x(?) and
B2 =B — (u® + Bx® - u)] = Ex®] - u 4 BEX] - u®) = 0,
we have
Var[z; — aTx(g)]

=E[z; — a'x® — E[z; - osz(z)]]2

=E [zi —pi—ol (X(Q) _ M(Z))]Q

:E[x§11.2) + Bg)(x(z) _ N(Z)) —_al (X(z) _ N(g))]z

=E[z{""? ~Elz{""?] + (B — o) (x? — p?)]?

2

Var o) + E[(o1) — B2 (B — )T (< — )] + BB - )T (<2 - )]
=Var[z{"?] + (B — O‘)TE[(X@) —p?)(x® ~ “(2))1 Bu — )
=Var[e{""?] + (B(s) — @) Cov(x) (B - @)
>Var [3:511 2)},
where the quadratic form attains its minimum of 0 at B;) = a. O

Remark 2.1. Observe that
Efed = i + T (x? - @)
Hence, the second equality in the proof means u; + ,@E';) (x(z) — u(2)) is the best linear predictor of x; in the

sense that of all functions of x?) of the form aTx?) 4 ¢, the mean squared error of the above is a minimum.

12



Theorem 2.6. Under the setting of Theorem 2.5, we have
Corr (xi,ﬂg)x(m) > Corr (xi, aTx(Q)) .

Proof. Since the correlation between two variables is unchanged when either or both is multiplied by a
positive constant, we can assume that

oo o
Using Theorem 2.5, we have
Var|z; (11. 2)] < Var[z; — « X(Q)]
<:>E[$z - ﬂ(z)( x® — (2)))}2 < E[xi — M= OtT( ®) — H(Q))]Q

E[(w; — pa) (-l; (X(2) )] —I—Var[ﬁ (2)]
< Var[z;] — E[(2; — p;) T(x(2 u(z))} + Var[a" X(2)]
Ef(zi — pa)a’ (x?) — p®)] E[(z: - ”i)ﬁ(Ti) (x® — pu®)]

V/Var[z;],/Var[aTx(2))] - /Var[z]y/Var [BTx()]
Cov [a:i, aTX(Q)] [ml,ﬁ( (2)}

—
V/Var[z;]/Var[aTx®?)] \/Var [zi]y/Var[BTx(

= Var[ }

O

(€3]
Theorem 2.7. Let x = [;2)} I XM and x® are independent and g(x) = ¢ (x1) g3 (x(?)), its charac-

teristic function is

E[g(x)] = E[gM (xV)]E[gP (x2)].

Proof. Let f(x) = fM)(xM)f2)(x(2)) be the density of x. If g(z) is real-valued, we have

_/J:O.../;mg(x)f(x)dzl...d:cp

+oo —+oo
:/ / gM (xM)g@ (x@) FD) (%) 1@ (2 day . .. dz,

7+oo 7+oo —+oo —+o0
= gP (xM) FO DY day .. / / xN A (xDydzy,, ... dz,

If g(z) is complex-valued, then we have

9(x)
=[91"(xM) +1g5" (xM)] [ (xP) +15” (x*)]
=g (xM)g1” (x®) = g5 (x ) g5 (@) + 1 97" (x) g5 (x@) + g5 (x V) g1 (x)]

and

=E[g" (x)g{* (x?)] — E[g{" (xP)g8? (xP)] +1E[gV (xD)g$ (x?) + iV (x V)P (x))]

13



=E[g1" (x| E[¢{” (x@)] — E[g{" (xD)]E g5 (x?)]
+iE[g{" (xW)]E[gl (x®)] +1E[g5" (x)]E[gf? (x))]

= [E [0tV (x )] + ”E[gél)(x(”)ﬂ {]E (0P (x®)] + 1E[g§2)(x(2))”

—]E[g(l)(X(l))]]E[g(Q)(x(Z))]_

~—
—

Theorem 2.8. The characteristic function of x distributed according to Np(u,X) is

@(t) = exp (itTu - ;tTEt> .

for every t € RP.

Proof. For standard normal distribution y ~ N, (0,I), we have

do(t) = [exp (1 t y)]

/+oo /+oo exp 11;;2 exp (_;yTy) dy ... dy,
L e () o)
L el - 39) )
1o (46) [ e (42 )
- ﬂ exp (—it?)) = exp (—it%) .

For the general case of x ~ N,(p, ¥), we can write x = Ay + p such that y ~ N,(0,I) and ¥ = AAT.
Then we have

o(t) =E [exp(it—rx)]
=E [exp(it " (Ay + p))]
=exp (it'p) E [exp(i (ATt)Ty)}
=exp (itTu) o0 (ATt)

1
exp (1tTu) exp (—ZtTAATt>

exp T — tT2t>

O

Remark 2.2. Denote the characteristic function of x € N(u,X) as ¢x(t) = exp (itTp, — %tTEt). For
z = Dx, the characteristic function of z is

¢4(t) =E [exp(it'z)] =E [exp(it ' Dx)] = E [exp(i(D"t) 'x)] = exp (itT(Du) - ;tT(DTED)t>

which implies z ~ N (D, DTED) and we prove Theorem 2.).

14



Theorem 2.9. If every linear combination of the components of a random vector 'y is normally distributed,
then y is normally distributed.

Proof. Let y is a random vector with E[y] = p and Cov[y] = X. Suppose the univariate random variable
u'y (linear combination of y) is normal distributed for any u € RP. The characteristic function of u'y is

Pury(t) =E [exp(ituTy)]
1
=exp (i tE[u'y] — 2L‘QCOV(uTy))
s T Lo T
=exp (1tu m— §t u Eu) .
Set t = 1, then we have
T ST L
E [exp(iu'y)] =exp <1u p—u Eu) .
which implies the characteristic function of y is
ST 1 T
¢y(u) =exp(iu p— Ju Yu),

that is, y ~ N (u, X). O

Theorem 2.10. Let x ~ Ny, (p1,%1), y ~ Ny(p2, X2) and z = x+y. Suppose that x andy are independent.
Prove z ~ Np(p1 + p2, 31 + X3).

Proof. Let ¢, ¢y and ¢, be the characteristic functions of x, y and z. Then we have

¢4 (t)
=E [exp (itT(X + y))]
=E [exp (ith)] E [eXp (itTy)]
—=exp (—itTul + ;tTElt) exp <—itTu2 + ;tT22t>

1
=exp (—itT(Nl + p2) + §tT(21 + z32)t) ;
which is the characteristic function of Np(ul + po, X1+ X9). O

3 Estimation of the Mean Vector and the Covariance

Theorem 3.1. If x1,Xa,...,xXy constitute a sample from N(p,X) with p < N, the mazimum likelihood
estimators of p and X are

(X(x - i) (X(X - X)T

M=

1 & 1
u:fc:ﬁo;xu and Ezﬁ

I
=

«
respectively.

Proof. The logarithm of the likelihood function is

PN

ML =—==In2r - gln (det(X)) — (Xo — p) 27 (x4 — ).

N =
M=

Q
Il
—_

15



We have

a;l N
=) (xa—%) S (xa = %)+ Y _(X—p) T (xq — %)
a=1 a=1

where the equality holds when pu = X. Hence, the estimator of means should be i = x.
Now, we only need to study how to maximize

N
—%thﬂ' - %ln (det(X)) — % Z(Xa - %) 27 (%, — X).

Q
Il
—

We let & = ¥~ and

N
I(®) = — ? In 27 — gln (det(T~1)) — % D (%0 — %) ¥(xq — %)

N
A A (det(®)) — % >t ((xa — %) ¥(xq — X))

2 2 =
PN N 1<
_ 4V 4 o T
= 5 In2m + 5 In (det(P)) 2;‘&“ (%0 — %) (xa — %) ' ¥),
then
ouw) o ( PN N 1 & _ .
N
_Ng-1_1 e T
=3 R4 5 ;(xa X)(Xq —X) .

We can verify [(¥) is concave on the domain of symmetric positive definite matrices, which means the
of(¥)
ow

maximum is taken by = 0, that is,

N
T=0 = %Z(xa —X)(xq — %) .
a=1

Lemma 3.1. If D € RP*P js positive definite, the mazimum of
f(G) = —NIndet(G) — tr(G™'D)

with respect to positive definite matrices G exists, occurs at G = %D.

16



Proof. Let D=EE" and ETG™'E = H. Then we have G = EH'ET,

det(D)
det(H)

det(G) = det(E) det(H ) det(ET) = det(EE" ) det(H™ 1) =

and
tr(G7'D) = tr(GT'EE") = tr(E' G'E) = tr(H).
Then the function to be maximized (with respect to positive definite H) is
g(H) = —NlIndet(D) + N Indet(H) — tr(H).
Let H= TT" here L is lower triangular. Then the maximum of

g(H) = — Nlndet(D) + N Indet(H) — tr(H)
= — NlIndet(D) + N In(det(T))? — tr(TT")

p
= — Nlndet(D) + N1n (H t§i> -t
i=1 i>j
p

= — Nlndet(D) + Z (NIn(t3) — t7;) — Zt?j

i=1 i>j

occurs at % = N and t;; = 0 for i # j; that is H = NI. Then
G = —D.
N

O

Theorem 3.2. Let f(0) be a real-valued function defined on a set S and let ¢ be a single-valued function,
with a single-valued inverse, on S to a set S*. Let

g(0") = f(¢71(67)) -

Then if f(0) attains a mazimum at 0 = 0y, then g(0*) attains a mazximum at 0% = 605 = ¢(6). If the
mazimum of f(0) at Oy is unique, so is the mazimum of g(0*) at 65.

Proof. By hypothesis f(6p) > f(0) for all § € S. Then for any 6* € S*, we have

9(0) = f(671(07)) = f(0) < f(00) = 9(¢(00)) = 9(65).

Thus ¢(6*) attains a maximum at 05 = ¢(fy). If the maximum of f(#) at 6y is unique, there is strict
inequality above for 6 # 6y, and the maximum of ¢g(#*) is unique. O

Theorem 3.3. If ¢ : S — S* is not one-to-one, we let
¢~ (07) ={0:0"=¢(6)}.

and the induced likelihood function
9(0") = sup{f (0) : 6" = ¢(0)}.

If 6 = 0 mazimize f(0), then 8* = ¢(8) also mazimize g(0*).

17



Proof. The definition means

sup g(0") = sup sup f(@)=sup f(0).
6+ 5~ 6= €5* 0+ =¢(0) 6es

The definition of 6* = ¢(6) means

f(6)= sup f(6)=g(6")
6=5(6)

Since @ = 6 maximize f(6), we have

9(6%) = £(8) = sup f(8) = sup g(6"),
0eS 0*cS*

which implies 8* maximize g(0*). O

Corollary 3.1. Ifxy,...,xy constitutes a sample from N (p,X), let p;; = 0i;/(0i0;). Then the mazimum
likelihood estimator of p;; is

T e-)e-)
\/ZaNzl(xia - @)QVZLL(W — ;)2

Proof. The set of parameters y; = p;, 02 = 0y and pij = 04j/\/0ii0;; is a one-to-one transform of the set of
parameters p and 3. Then the estimator of p is

SN (@ia — 7)(2j0 — 7))

R a-
pij = \/&fﬂ(}” ah— z :
i35 SN (i — 202N (e — 7

O

Theorem 3.4. Suppose X1, ...,xn are independent, where xo ~ Np(pa,X). Let C € RY*N be an orthog-
onal matriz, then

N
a = anﬂxﬁ NNP(VCHE)v
B=1
where v, = Zgzl cappg fora=1,...,N and y1,...,yn are independent.

Proof. The set of vectors y1,...,yn have a joint normal distribution, because the entire set of components
is a set of linear combinations of the components of X1, ..., Xy, which have a joint normal distribution. The
expected value of y,, is

N N N
o] =E Y capxp| = capBlxp] =Y cappip.
B=1 B=1 B=1

The covariance matrix between y, and y, is

Covlya,y-]
=E[(ya — va)(yy — V’Y)T}
N N
=E | [ D cap(xp—ps) | | D crelxe —pe)"
B=1 £=1

N N
=D capcreE [(x5 — po)(xe — pe) ]

B=1¢=1

18



B
= Z CaBCyp,

N N

D0 apredpe S
=1¢=1

N

p=1

where

s 1 is=g
%7 o, itp AL

If o = ~, we have Zgzl CaBCyB = Zg:1 caBCap = 1; otherwise, we have Zgzl capcyp = 0. Hence, we have

N
Cov[Ya, ¥4 = Y CapypD = 6ary S

B=1
The set of vectors yq, ..., yn have a joint normal distribution, we have proved Cov[y,] =X foraa=1,...,N
and yi,...,yn are independent. O
Lemma 3.2. If
e
i1 €2 ... CIN
c c c C;—
C— 21 22 ... 2N | C RNXN
¢N1 CN2 ... CNN T
c
N

is orthogonal, then 25:1 XoX, = Zg:1 YoYo wherey, = Z]BV:1 CapXa forao=1,...,N.

Proof. Let

x|
X3
X = e RV*?,
3y
We have
N N N N
> Va¥a =Y XTcact,X=X" [ coc] | X=XT(CTC)X=XTX=> xux].
a=1 p=1 p=1 p=1

Remark 3.1. We can also write yo, = X ¢y and Y = CX by defining Y like X.

Theorem 3.5. Let x1,...,xx be independent, each distributed according to N'(u,X). Then the mean of
the sample

1 N
[,AL:)_(:*ZXO[
Na:l

19



is distributed according to N'(p, %) and independent of

1 -
Y= NZ -x)".

Additionally, we have N¥ = ZN 11 z.2., where z, ~ N(0,%) fora = 1,...,N, and z1,...,zn_1 are
independent.

Proof. There exists an orthogonal matrix B € RP*P such that

X X X
X X X
B =
[ L
Let A = N¥ and let z, = Zgil bopXxg, then
N

ZN—ZbNBX Z% NXx

By Lemma 3.2, we have

2

I
WE
x
£
|
M=
s
3
|

N
xx) + Y xx'
1 a=1

a=1 a=1 a=

N
=) XaX, — Nxx' — Nxx' + NxX'

I
WE
&
|
=
"
w

a=1
N

= Z zazl — ZNZy
a=1
N-1

= zazg
a=1

Lemma 3.2 also states zy is independent of z;,...,zxy_1, then the mean vector X = ﬁzN is independent

of Aand 3 = %A. Since X = ﬁzn = ﬁ Zgil bngxg, Theorem 3.4 implies

N

N N
1 1 1 1 1
Ex|=E | — byngxp| = — —pu=pu, and Cov[x] = —Cov byngxg| = =2.
X] \/N;Nﬁﬁ m;muu %] = ;Nﬁﬁ N

1
Hence, we have X ~ N (;,L, NE). Fora=1,...,N — 1, we also have
N N N N
E[za] =E |} bagxs| =Y bapE[xs] =D bapp=> basbysVNp=0.
B=1 B=1 B=1 B=1
and Theorem 3.4 implies z, ~ N(0,X). O
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Theorem 3.6. Let x1,...,xn be p-dimensional random vector and they are independent. Denote

1 & 1

X = Naz::lxa and X = N;(Xa — %) (%0 —%)".
IfE[x;] = - =E[xy] = p and Cov[xy] = --- = Cov[xy]| = X, then we have
A N -1
EX = —3.
5] = 2=
Proof. We have
2 = Cov[xa] =E [(%a — #)(Xa = 1) '] =E [Xax; —Xap| —pxg +pp'] =E [xox)] — pp

and

%1 = Cov[x] = E[(x ~ B[x])(x ~ Blx)) ] = E[xx] - pn

Hence, we obtain

1N
=K v Z xaxg — XXT]

L a=1
=E [Xax:ﬂ —-E [)‘()‘(T]
1
=% +pp' - (nE + uuT)
_n- 12.
n

O

Theorem 3.7. Using the notation of Theorem 3.1, if N > p, the probability is 1 of drawing a sample so
that

s_Ly . )T
—NZ(XQ_X)(Xa_X)

a=1
is positive definite.

Proof. The proof of Theorem 3.1 shows that A = Z7Z where

which means rank(ﬁ)) =rank(A) = rank(i). Then the probability is 1 of S -0is equivalent to

Pr (rank(i) = p) =1
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Since appending rows at the end of Z will not increase its rank, we only needs to consider the case of
N=p+1(N—-1=pandZ e RP*P). We have

Pr(z1,...,2zp are linearly dependent)

P
< ZPr (zi € span{zi,...,%;—1,2%;,... ,zp})
i=1

=pPr (21 € span{za, ..., zp})
=pE [Pr (z1 € span{za,23,...,2Zp} | 22 = aa,...,2, = ap)}
=pE[0] =0

The second equality is obtained as follows
Pr(z; € span{z,,...,2,})

o0 o0
:/ / Pr(z1Gspan{zQ,...,zp},ZQ:ag,...,zp:ap)dag...dap
— 00 — 00

o0 o0
:/ / Pr(21ESpan{zz,...,zp}\z2:az,...,zp:ap)Pr(zz:ag,...,zp:ap)dag...dap
—0o0 —o0o

=E [Pr (z1 € span{za,...,Zp} | 22 = aa,...,2, = ap)}
—0

The last equality holds since Pr (z1 € span{zs,...,2p} | 22 = Q2,...,2p = ap) is the probability of the
event that z; lies in a subspace with the dimension no higher than p — 1. O

Theorem 3.8. If x1,...,xx are independent observations from N(u,X), then

1. X and S are sufficient for p and X;

2. if p is given, Zg:l(xa — ) (%o — @) " is sufficient for X;
3. if X is given, X is sufficient for p;

where

1 & 1 <
S E _ E < S\ T
X = N P Xa and S = m a:1(xa — X)(Xa — X) .

Proof. The density of x1,...,xy is

N
[T n(xa | 1, %)
a=1

=(2m)" "% (det(X))

w|z
o
M
o
|
|
[l
]
N
[~]=
2
Q
|
S
‘4
\g
L
»
Q
|
S
N~
~

a=1
N
=(2m)~"%" (det(%)) ¥ exp (—itr (2‘1 > ke = )T (0 m))
a=1
:(27r)_% (det(E))fg exp (—; (Nx-—p) 'S (x—p)+ (N -1tr (E_ls))>

where the last step is due to

N
(Xa — ”)Tz_l(xa — )

a=1
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(x—p)TE (x4~ %)

I

+ M=
iM="%
" \
e =
"
\
=
+

WE

N
Z 1(Xa - X)
=NE-p)' = (x—p) +(N-1tr (27'S).

Hence, the density is a function of t(x1,...,xy) = {X,S} and 8 = {u, X}. If p is given, it is a function of
t(x1,...,XN) = Ziv:l(xa — ) (xo —p)" and @ = X. If ¥ is given, it is a function of t(xy,...,xy) = X
(since S can be viewed a function of t for given)and 6 = p. O

Theorem 3.9 (Theorem 3.4.2, Page 84). The sufficient set of statistics X, S is complete for p, > when the
sample is drawn from N'(p, X).

Proof. We introduce z1,...,zy by following the proof of Theorem 3.5. For any function g(x,nS), we have
0 = Elg(x,nS)]
1 N-1
/ /K det -% ( Zzaz > exp (2 (; zlElzaJrN(i/L)TEl(ip))) dz;...dzy_1dx.

for any p and ¥, where K = v/N(27) 2PN, Let £7! = I — 2 such that symmetric © and I — 2 > 0.
Let p = (I —2Q)~'t = 3t. Then, we have

z/.../K(det(E))’%g (xvlvgjzazl>

N-1
1
exp (2 ZZE*IZO[ + N2k —2Np 2 x4+ NMTEI,UJ>> dz;...dzy_1dx

N—-1
. ( S )

a=1

I
\
—

Ja
5
E
e
vl

N-1
1
exp <—2 tr (E_lzazT) + Ntr (E_l ) —2Nt'x —|—NtTEt>> dzq...dzy_1dx

/ / %,B — Nxx')exp (tr(Q2B) +t' (Nx)) n ( >NH n(zq | 0,1)dz; ...dzy_1 dX

a=1

v|z

1 -1
=(det(I —282)) * exp (—2NtT(I —2Q) t)
/g (%,B— Nxx")exp (tr(2B) +t' (Nx))n ()‘( |0, ;]I> dx

—(det(I - 292)) * exp (—;NtT(I —~ 29)%) E[g(%,B—Nxx")exp (tr(2B) +t' (Nx))].
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where B = Zg;ll z,2) + Nxx'. Thus
0=E[g(%x,B—Nxx')exp (tr(QB) +t' (Nx))]
= //g (x,B — Nxx")exp (tr(2B) + t ' (Nx)) h(x,B) dxdB
where h(x,B) is the joint density of X and B. Consider that

//g (x,B — Nxx') exp (tr(2B) + t ' (Nx)) h(x, B) dx dB

is the Laplace transform of g (x,B — Nxx ") h(x, B). Then we have g(X,nS)h(x, B) = 0 almost everywhere.
Hence, we have

0 :/ lg(%,nS)h(%, B)| dx dB
:/ lg(%, nS)|h(%, B)| dx dB
- / l9(%,nS)|dm(x, B).
Hence, we have g(x,nS) = 0 almost everywhere. O

Cramer-Rao Inequality We first give some lemmas. We denote the density of observation with parameter
0 by f(x,0) and

s ~0lng(X,0)
N 00 '

where g is the density on N samples and X = {x1,...,xn}.
Lemma 3.3. We have E[s] = 0.
Proof. We have

dlng(X, 0
E[Sj]:/g(x,a) gg_ ) ax
J
1 09(X,0)
[ %0 x5 o
~ [ 99(X,0)
_/ o X
_i/ (X, ) dX
)
—871 0.

Remark 3.2. Similarly, we also have

" [81112(0)(,0)] o

Lemma 3.4. For unbiased estimator t of 8, we have €[t,s] = 1.
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Proof. We have

cg[tjask]

= [ty -0) P850 .0 ax
:/(tj —9j)789%’9) dx

B ot; — 0,) 1, j=*k,
- /(xe)iaek dX = {0’ i

where the last line holds since
[t~ 690x.0)ax
:/tjg(X,G) deé)j/g(X,O) dX

=Et; — 0,
=0
and therefore
0
=— [(t; — 0,)9(X,0)dX
0= /@ 0j>g< 6)d

ot 99(X, 6)
/ aak g(X 0)dX+/( ej)aigk.

O

Theorem 3.10. Under the regularity condition (everything is well-defined, integration and differentiation
can be swapped), we have

Oln f(x,0) (O0ln f(x,0) T
IR e

where E[t] = 6 and f(x,0) is the density of the distribution with respect to the components of 0.

Proof. For any nonzero a,b € RP, consider the correlation of a’'t and b's, we have
€la’t,b's] a' ¢[t,s|b a'b
~/Var[aTt|Var[bTs] \/aT‘ﬁ a\/bT¢[s|b \/aTCf a\/bT¢[s]b
Let b = (¢[s])la, we have

aT((f[s])_la

>
VaTlétlay/aT (€

which means
a'¢tla>a’ (¥]s]) 'a
for any nonzero a. Hence, we have

E[(t—0)(t—0)"] =<[t] = (¢[s) ™

(e[502]) = (e [5®]) = (e[™5])

1 Oln f(x,8) (9l f(x,0)\ ]\
_N<El 00 ( 06 )D
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Theorem 3.11. Let p-component vectors y1,y2, ... be i.i.d with means Ely,| = v and covariance matrices
E[(Yo — ¥)(ya —v) "] = T. Then the limiting distribution of

=)

a=1
asn — +oo is N(0,T).
Proof. Let

On(t,u) =E lexp <iutT\/15 Z(ya - V))] ,

where u € R and t € RP. For fixed t, the function ¢, (t,u) can be viewed as the characteristic function of

Z tT]E yoz])

By the univariate central limit theorem, the limiting distribution is A’(0,t " Tt). Therefore, we have

1
lim ¢, (t,u) = exp <2u2tTTt) ,

n—oo

for any u € R and t € RP. Let u = 1, we obtain

dn(t,1) = lexp < NP Z )] 5 exp (;tTTt)

for any t € RP. Since exp (—%tTTt) is continuous at t = 0, the convergence is uniform in some neighborhood

of t = 0. The theorem follows. O
Theorem 3.12. Ifx;,...,xy are independently distributed, each x, according to N(u,X), and if p has an
a prior distribution N'(v, ®), then the a posterior distribution of p given X1, ...,Xy is normal with mean
‘I>‘I>—|—12_1_+12 <I>—i—123_1
— X+ — — v
N N N

and covariance matrix
1 -1
b —-P(P+ -3 [
(#+5)

Proof. Since x is sufficient for p, we need only consider X, which has the distribution of pu + y, where

1
~ 0, -X%
y ~N ( N )
and is independent of p. Then we have

] e [en(BLE 8]

which implies X ~ N (v, ® + £ X). Since we have
pi_ (I 0O |p
x| I I||y|’

26
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then

(B e 0sl)

Consider the conditional distribution of g given X, we obtain the mean and covariance given X is

u+<1>(<1>+ 123)_1()7:—1/)

1\t 1\t

Remark 3.3. Let

1) ) > >

_ X ~ 12 11 12
<= fa] v ([ie] 22 22]).
The conditional density of xV) given that x® is
x| x® ~ N (H(l) + 2350 (x® — p@) 3y — 2122521222)
Lemma 3.5. If f(x) is a function such that
b
f0) - f@) = [ f(a)da

for all a < b and if

/;OO |f’(x)|\/% exp (—;(az ~ 9)2> dz < 400,

then

/J:C f(@)(z — 9)\/% exp (—;(m - 0)2> dz = /:O f/(x)\/% exp (—;(x _ 9)2) da.

Proof. Since (z — 9)\/%7 exp (—3(z — 0)?) is odd function, the LHS of (5) can be written as

[ zo(f(x) — F(0)(x - 9)\/% exp (—;@; - 0)2> &

- [T s -0 e (~5e-07) as
;
+ L =100 e (507 o
-/ 0/0 :’<y><x—0>¢%exp(—;<m—e>2) dyda
[ [ -0 e (<307 ayas
- / T a0 e (— 307 ) dsy
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//f (x—0 exp(—;(x—9)2>dxdy
=/9 f(y)reXP< (y— 92>dy / f'y

/:o f’(z)\/%exp <;(x0)2) dz

where we use

o O (—;(y —~ 9)2> dy

/(x—G)\/;TTeXp (-3@:-9)2) dz
:\/%/exp (—;@—9)2) d <;(x— 9)2)

:J—% exp (;(:17 — 9)2)

and

. -1 1 2\ Lo 2 _
xETw\/ﬂeXp< §(m 0)) wgmwrexp< —(z 0))—0.

Lemma 3.6. Let x1,...,xy are independently distributed to N,(p, NI), we have

E|l% - ul3] = ZiJVar@a) =p.

Proof. We have

B [l% - wl]
=B [ix((x — ) (x — )]
=B [ix((x — w)(x — 1) )]
(% - p)

Theorem 3.13. Under the setting of Lemma 3.6, we let

m(x) = (1 - ”f__j”2> (XR—v)+v

andp > 3. Then E [||m(5<) - u||§} <E [||>z - ulli].

Proof. We have

AR(p) =E [|% — ]2 ~ [m(x) — ]

_ 2 p—2 _
-E ['X_”Q_H<l_||s< ) xnivn
—Vl,y
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i=1 i=1 ||X_V||2
B 2
P , e p—2
=E Z(xz - /-Lz) - Z Tq — Mg — —— (mz z)
i=1 i=1 % — v

[ 2(p— P P\ (p—2)2(z; — vy)?
L 2 =1 i=

1
P 2
Ti—vi (p—2)
=E |2(p—2) Lzz'(%‘—m)—zm
;”X—Vuz

Using Lemma 3.5 with 6 = p;,

T — v F(@) = 1 2(@—w)®

s 2 - 1
[x=vll;  lx=vl

f(zi) =

= 2
1% = v,

Hence, we obtain

AR(p) =E 2(p—2)§p:< : 2(:@—%—)2) - (p_2)2]

— 2 _ 4 2

i \Ix—-vl; |x—v|, lx — vl
L 2w -2

R 2<p—2>z( I o B
= \Ix-v|; |x—-v|, x — vl

_ 2 - 2 _ 2
_||X_VH2 [x—vly Ix—v|;

=E (p_2)21 >0

- 2
1% = vl

|- -2 (-2 ]

Remark 3.4. We consider the bias and variance decomposition

E [lm(x) — gl

=E |m(x) - Em(x)] + E[m(x)] — gl

=E |m(x) — E[m(x)]|; + 2E[(m(x) — Elm(x)]) T (E[m(x)] — p)] + E |E[m(x)] — g3
(%) — E] %

1112 2
— Em(x)][l; + [E[m(x)] — pl -
Unbiased estimator may leads to larger variance.

Lemma 3.7. Suppose that x ~ N (u,I), then

E Hg+(||x||2)x - HH; <E ||9(HXH2)X - HHE )

where

o () = {g(u), if g(u) >0

0, otherwise

for any function g(u).
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Proof. We have

E|lg(Ixl2)x — ull; — E[lg* (Ixll2)x —
=E | (9(Ixl12))”IxI3] = E [ (5 (Ix]2)) lx]12] +2E [ (g (Ixll2) = g (lIx]2))]
>2E [p"x (g (Ix]12) — g(Ix]12))] -

Let P be the orthogonal matrix such that PPT =T and

P:[ L ,x,...,x},
(1]l

which means
PTp=[lplly,0,...,0".
Let y = PTx, then we have u"x = Py = (PT10)Ty = ||, 91 and
E [ x (g7 (Ix]12) — g(lIx]12))]
=E [[lzlly v1 (9% (Iyll2) = 9(llyll2))]

+oo N 1 1(& 9
=||u||2/ y1 (g7 (Ilyll2) = g(llyll2)) 2 2 Syl =2 lwly+lluly ) ) dy

-0 i=1

2
lially exo (~3 11wl

+oo 1 p
@ [ v1 (gt (llyll2) = g(llyll2) exp( S v >eXp y1 [lplly) dy

[e'e) 1=1
2
il exp (= al)
_ e

+o0 +oo
/ / H(lyllz) — g(llyll2)) exp (—Zw) exp(y [|eel;) — exp( s [|eell)) g ...

where the last step use exp(z) — exp(—z) > 0 for all z > 0.
Theorem 3.14. Let

.
m(i)z(l—_p_22>(>_<—u)+u and m(x)=<1—_]’_22> (% —v)+ v,

1% —vll; % —vll;
where X ~ N (u,I). Then we have E |jm(X) — u||§ <E|m(x) — u||§
Proof. Use Lemma 3.7 with g(u) =1 — (p — 2)/u, x = X — v and replace pu by p — v.
4 T2-Statistic

Theorem 4.1. For y ~ x2(n), we have E[y] = n and Var[y] = 2n.

Proof. We can write

where z1,...,x, are independent standard normal variables. Then, we have

=E fo] :ZE[:U?] :ZVar[xi] =n

30
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and

n n

Varly] = Var

i=1 i=1 i=1

We use the fact E[z}] = 3 because of ¢(t) = exp (—1t*) and

4 Ld%o(t)
il =7 g

= (t* — 6t + 3) exp <—;t2)

t=0 t=0

Theorem 4.2. The density of y ~ x2(n) is

;y%_l exp (_g) Y >0
fly; ) ={ 230 (3) 2/ ’

0, otherwise,

I3

where

Proof. We first provide the following results:
1. We have I (3) = /7, because

Then the transform & = ,/y1 is one to one and the density of y; is

2 ( 1 )d ; 1 ( 1 )
ex — = = ex I .
var S\ Tayr T vemn T2

31

ZCE?] = Var [z7] :ZIE {x;l, (E[xf])z} :Z]E[S—l] .



3. For beta function

we have

Consider that
L(a)L(B)

o0 o0
:/ 2 exp(—x) dx/ y?exp(—y) dy
0 0
o0 oo
:/ / 2 1y Lexp(—(z 4+ y)) dy da.
o Jo
Using the substitution = uv and y = u(1 — v), then the Jacobian matrix of the transformation is
oz Oz
J— [81}, ov _ |: v u :|
1—-v —u

9y 9y
ou ov

and det(J) = —u. Since u =z +y and v = z/(z + y), we have that the limits of integration for u are

0 to co and the limits of integration for v are 0 to 1. Thus

F(a)T(8) = / N / Ty oxp(— (x4 9)) dyde

:A Aw(uv)a—l(u(l — U))'@_l exp(—(uv + u(l — 1})))| — u| du dv
1 roo

= P 1211 — 0)P L exp(—u) dudv
o Jo

1 oo

:/ v“_l(l—v)ﬁ_ldv/ u* P~  exp(—u) du
0 0

=B(a, )T (a + ).

then

oo PP of(y, 2) ) ,
F'(z) = / 5 4o+ [(b(2), 2)b'(2) = f(a(2), 2)a/(2).

(2) o

We prove the density of Chi-square distribution by induction. For n =1 and y > 0, we have

fly;1) = ! exp (—;y) = ! y%_l exp (_Q) .

V2my 25T (%) 2
Suppose the statement holds for n — 1, that is
1 n=1_q

flyin—1) =275 T (5
0, otherwise,
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We consider y,, = yn_1 + 22 such that y, 1 ~ x*(n — 1) and z,, ~ N(0, 1) are independent. Let F; be the
corresponding cdf of f(y;1). Then the cfd of y, is

Pr(yn < Z)

[ [ hewn@aa
0 0
— [ (Fae =) = FiO)us(w) ey

0

= /0 Fi(z = y) fn-1(y)dy

and the pdf of y, is (let y = t2)

S 11 zy) 1 n1 ( ZJ)
—T - \Z — 2 ex - 2 ex — = d

Theorem 4.3. If the n-component vector'y is distributed according to N'(v, T) with T = 0, then
y T ly ~ XEL (VTTflu) .
If v = 0, the distribution is the central x2-distribution.

Proof. Let C be a non-singular matrix such that CTCT = I. Define z = Cy, then z is normally distributed
with mean

CEly] =Cv £ X
and covariance matrix
E[(z-=A)(z—X)"|=CE[(y -v)(y—v)']C" =CTC' =1
Then we have
y' T ly=z'C T 'Clz=2" (CTCT)i1 z=12'z,

which is the sum of squares of the components of z. Similarly, we have v T~ v = AT X. Thus, the random

variable y TT~ 'y is distributed as E?:l 22, where 21,...,z, are independently normally distributed with
means Ai,..., A, respectively, and variances 1. By definition this is the noncentral y2-distribution with
noncentrality parameter Y ;A2 = v T v, O

Theorem 4.4. The probability density function (pdf) for the noncentral x?-distribution is

exp (75(72+v)) vE—1 0 128,81 (ﬁJr%)
Jap ) = S AT )

0, otherwise.

v > 0,
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Proof. x2(7%) with 72 = ¥ | A? can be constructed via y "y with y ~ N(X,T).
Let Q be p x p orthogonal matrix with elements of the first row being
Ai
i1 =
EEV/FVIDY

fori=1,...,p. Then z = Qy is distributed according to N (7,I), where

-
0
T= ,
0
where 7 = VATA. Let v=y 'y =2z'z = le 22, Then w = f 0 % 2 has a y2-distribution with p — 1

degrees of freedom, and z; and w have as joint density
1 ( 1( )2> 1 =14 ( w)
——exp| —=(z1 — 7 ————w 2 exp | ——
Vor P\ T2 25T (250 P2
1 _
=Cexp <—2 (7 + 21 + w)> w'T exp (721)

=Cexp (—; (72 + 27 + w)) Wz Z Ty

a!
a=0

where C~1 = 2% /7l (%) The joint density of v = w + 2} and z; is obtained by substituting w = v — 23
(the Jacobian being 1):

aa

Cam<;ﬁ+@>@zl §§

The joint density of v and u = z1/y/v is (dz; = /vdu)

C’exp<;(72+v)) (1 —u?) ZTUzu

The admissible range of z given v is —/v to \/v, and the admissible range of u is —1 to 1. When we integrate
above joint density with respect to u term by term, the terms for a odd integrate to 0, since such a term is

an odd function of u. In the other integrations we substitute u = /s (du = %ds) to obtain

1 .
/ (1- u2)p7_5u2/3 du

—1

1
:2/ (1-— UQ)L;%UM du
0

1
:/ (1- s)pTigsﬁfé ds
0

—B( o )

TP T(B+3)
I'(5+6)
by the usual properties of the beta and gamma functions. Thus the density of v is
1 1 - ° QBUBF 5_,_ )
exp (-2(7' —|—v> 2—25 T ﬁ)
for v > 0. O
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Theorem 4.5. Define the likelihood ratio criterion as

- e, L(po, X)
 max L(p,X%)’
pERP =St
where
N N 1 N
L, B) = (2m) % (det(2) ¥ exp (2 3k — 1) TE (x4 m)
a=1
then we have
B
1+7T2/(N—1)

where T? = N(X — o) "S™HX — o).

Proof. The maximum likelihood estimators of pu and ¥ are
. 1 &
o =X and o= N{;(xa—i)(xa—i)—r.
If we restrict o = po, the likelihood function is maximized at
. 1 & .
S D

Furthermore, we have

) _N 1
max  L(p, %) = (2m)7F (det(Sa)) " * exp (—pN>
pERP ZeSHT 2

because of

Similarly, we also have
PN _N 1
max L(po,X) = (27)” 2 (det(X,)) 2 exp <—pN) .
Sesit 2

Thus the likelihood ratio criterion is

L_emF (det(Ba)) " * exp (—3pN) _ (det(2,)*
(27) 75" (det(B0)) ™% exp (—1pN)  (det(Zq))®
(et (Zi e -0 - 0T)) T (det (A))¥
(det (S, (0 — )0 — 1)) ) © (et (A NG = po) (& = p10) 7))



where A = ZaNzl(xa —%)(xq — %) = (N — 1)S. Hence, we obtain

B det (A)
~det (A + (VN(R = p0)) (VN (X — o) 7))
1
T N = ) A & — )
1
T1+T2/(N 1)

2

A

where T2 = N(X — p0) "S™H(X — o) = (N — 1)N(X — po) "A7L(X — po) and we use the property of Schur
complement to obtain

A u T 1 —u' T A
det({_u—r 1]>:det(A+uu )zdet([u A}):det(A)(l—i—u A" 'u)
with u = v/N(X — o). Recall that The decomposition

vefe n o PR pflote

C D 0 I 0 D||D!C I
means we have det(M) = det(D) det(A — BD~1C). O
Lemma 4.1. For any p X p non-singular matrices C and H and any vector k, we have
k"H 'k = (Ck)' (CHC")"(Ck).
Proof. We have (Ck) " (CHC")"1(Ck) =k'C"(C")"}(H)"!C~!(Ck) =k "H k. O
Remark 4.1. This lemma means
T2 =N(x* —0)T(S")"}(x* —0) = N(Cx —0) " (CSC) "} (Cx* - 0) = N(x—-0)' S} (x* —0) =72

Theorem 4.6. Suppose y1,...,ym are independent with y, distributed according to N (T'w,, ®), where wy,
is an r-component vector. Let H=13"""_, wow,) assumed non-singular, G = S Yoaw o H™1 and

C= Z(Ya - GWQ)(Y@ - GWa)T = Zyayl — GHG".
a=1 a=1

Then C 1is distributed as
m-—r
5 o
a=1

where Uy, ..., W, are independently distributed according to N'(0, ®) independently of G.

Proof. Theorem 4.3.3 of “Theodore W. Anderson. An Introduction to Multivariate Statistical Analysis.
John Wiley & Sons Inc; 3rd Edition.” O

Theorem 4.7. Let T? = y 'S~ ly, where y is distributed according to N,(v,X) and nS is independently
distributed as 22:1 za2) with zi,...,2, independent, each with distribution N,(0,X). Then the random
variable

T? n—p+1
n p

is distributed as a moncentral F-distribution with p and n — p + 1 degrees of freedom and noncentrality
parameter v X v, If v =0, the distribution is central F.
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Theorem 4.8. Let T? = y 'S~ 'y, where y is distributed according to N,(v,X) and nS is independently
distributed as >\ _, 2,2 with zy,...,2, independent, each with distribution N,(0,X). Then the random
variable

T?> n—p+1
n p

is distributed as a moncentral F-distribution with p and n — p + 1 degrees of freedom and moncentrality
parameter v X" v, If v = 0, the distribution is central F.

Proof. Let D be a non-singular matrix such that DEDT =1, and define
y*=Dy, $*=DSD', v*=Du.
Lemma 4.1 means
% =(y")" (") 7'y,

where y* is distributed according to N (v*,I) and
N-1 N-1
nS* = Z 7' (z))" = Z Dz, (Dz,)"
a=1 a=1
with z* = Dz, independent, each with distribution N (0,I). We also have

v 'y = (D) (DED ") Y(Dv*) = (v*) Tvr.

Let the first row of a p x p orthogonal matrix Q be defined by

*

i1 = Yi
= ——

(y*)Ty*
fori=1,...,p. Since Q depends on y*, it is a random matrix. Now let

u=Qy’ and B=Qns)Q",
where n = N — 1. The definition of Q means
p P *\2
o _ 2 ()) /
Uy = WY, = —F——— = (y*)Ty*
; V) Ty

and

P p
uj = qu‘z‘yf =4/(y")y* ZjSfhi =0
i=1 i=1

for 7 =2,...,p. Then

22 :(},*)T(S—*)_lyk _ (Qu)T(QTBQ)—lQTu — uTQT(QT)—lB—lQ—lQ—ru _ uTB—lu

n n
bitopt2 L b [wy
N A
=[u 0 ... O |. . . , | = uipt
wtow o] o

where b% is the (i, j)-th entry of B=!. Using Schur Complement, we have

1 —
o = b —b(yBay by by (6)
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with
B_ [511 ba)}
by B2
and
™ W )Ty
o bio.p bia.p

s

The conditional distribution of B given Q is that of

g - Zn (Vzd)z Z Va (v, Va,2— )T [bu b/, ]
B = * *\ T _ * *\ T _ a=1 a=1 p — (1) ,
2, Qei(Qa)T = 2 vilvi) [zz Ve (Vaa) S (Vha (v z,”)T] by Ba

where v, = Qz, are independent, each with distribution A'(0,I) since QDED Q' = I. We denote

a=1

G = (1)]3221 = Z va1(vaa- p TBz_zl
By Theorem 4.6, the random variable

bi1.2,..p =b11 — (b(Tl)Bg_zl) B2:By, by

= Z(VZA)Q -~ GB, G’

a=1

is conditionally distributed as
n—(p—1)
a=1
where conditionally the wi are independent, each with the distribution N(0,1); that is, by1.0, ... p is condi-
tionally distributed as x? with n — (p — 1) degrees of freedom. Since the conditional distribution of b11.2,
does not depend on Q, it is unconditionally distributed as x2. The quantity (y*)y* has a noncentral

x?-distribution with p degrees of freedom and noncentrality parameter (v*)"v* = v TS~ 'wT Then T is
distributed as the ratio of a noncentral x> and an independent 2. O

Remark 4.2. The equation (6) is based on the fact

BB gt g

(7)

M_[CD 0 I 0 D| [D-'C I

woefe w6 IR bl )

Lote [ 2]l

-1

and

B A -BD!C
_[ ( o

—(A-BD'C) 'BD!
~-D!C(A-BD'C)

D! 4+D'C(A-BD"'C) 'BD!
Theorem 4.9. Let u be distributed according to the x?-distribution with a degrees of freedom and w be

distributed according to the x?-distribution with b degrees of freedom. The density of v = u/(u +w), when u
and w are independent is

vETI(1—0)5 Y, (8)

NIR | =

B(

3)

[SliS)

1
where B(a, 8) = / 11 —t)ftde.
0
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Proof. Let

u
v = and 2z =1u-+w.
u+w

Then v = vz, w = (1 — v)z and

det(J(v,2)) = det Qai: %ZD = det ([_Zz 1311]) =z

Since v and w are independent, the joint density of v and w is

1
21

U 1 b_q ( w)
wo(Uy, W) = ————1U e —— ) w2 "e ——
Fuo (s ) 3 ( xp( 2) Q%I‘(g) AT

and the joint density of v and z is
Jo2(v,2) =fuw(vz, (1 —v)z)det(I(v, 2))
1 a_q vz 1 by (1—-v)z
—_ 2 _— ) —((1 — 2 — 7 .
(vz2) exp ( 5 ) T ( ) (1 —v)2) exp ( z
a+b

25T (3)
1 1 1 z
z exp ( 5) .
Consider that the density of x2-distribution with a + b degrees of freedom, we have

2T () ()
> 1 atb 4 z o
[ oo () e

[\

+ Nl

o

vl (1—)

2

Hence,

O

Remark 4.3. Beta distribution is a conjugate prior the binomial random wvariable. The binomial random
variable X with parameters n and 6 has the probability mass function

f(X =k|n,0) =Ckok(1 —g)nF.
Let 0 follows Beta distribution (prior distribution) with parameters a and b whose density function is

1
B (a,b)

Then we can write the density for the posterior distribution of 0 by Bayes rule

g(0]a,b) = @ (1 — )Pl

P(X =k|0)P(9)
P(X = k)

PO|X =k) =
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L CROP(L =) 00 (1 - 0) !
B k

P(X = k)

— Cﬁ 9k+a71(1470)n7k+bfy

“P(X =k)B(a,b)

Since CE/(P(X = k)B (a,b)) is independent on 0, it follows Beta distribution with parameters k + a and
n—k+b is density.

Theorem 4.10. Let x1,x2,... be a sequence of independently identically distributed random vectors with
mean vector p and covariance matrix 3. Let

N N
1 A
ﬁN:NZXa, SN:mZ(Xa—X)(Xa—X)T
a=1 a=1
and
T} = N(xn — po) 'Sy (Xy — ho)-
Then the limiting distribution of Ta as N — oo is the x2-distribution with p degrees of freedom if p = po.

Proof. By the central limit theorem, the limiting distribution of vV N(Xy — p) is AM(0,X). The sample
covariance matrix converges stochastically to 3. Then the limiting distribution of 72 is the distribution of

y Sy
where y has the distribution A/(0,X). The theorem follows from Theorem 4.3. O

Lemma 4.2. If v is a vector of p components and if B is a non-singular p x p matriz, then v' B~V is the
nonzero root of

det(vv' —AB) = 0.
Proof. The non-zero root \; of det(vv' — AB) = 0 associate with vector 3 # 0 satisfying
(vwl —=AB)B=0=vv'B=\B3 — (VTB_lv) vig=\v'g.

We can obtain that v 3 # 0, otherwise (vv' — A\;B)3 = 0 means B3 = 0 which is impossible since B is
non-singular. Hence \; = v B~ lv.

Remark 4.4. Using this lemma with v = v/ N (X — po) and B = A, we can prove T? /(N —1) is the non-zero
root of det (N (% — po)(X — po) T — AA) = 0.

O
Lemma 4.3. For any positive definite matriz S € RP*P and y,v € RP, we have
YTy <(vTS)(y 'Sy
Proof. For v = 0, the result is trivial. Otherwise, let
po VY
Y8y
Then we have
0 <(y —bS7) 'S (y — bS)
=y S ly —by'S7!Sy — by SSly — by SS!Sy
=y 'Sy — 2by 'y + b*y" Sy
_ Tg-ly . (YY)’
_y T 9
v 'Sy
which implies the desired result. O
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Theorem 4.11. Let {x(ai)} for a = 1,...,N;, i = 1,...,q be samples from N(u® %), i = 1,...

respectively and suppose

q
Zﬁiﬂ(i) =
=1

where B1,...,Bq are given scalars and p is a given vector. Define the criterion

T
q q
T2 =cC <Z Bzi(’) — [L) 871 <Z ﬂzi(l) — [L)
i=1 i=1

where
N; q 2
1 : 1 B
<(9) Z x(l), — Z i
P a=1 ’ ¢ i=1 @
and

q N;
(Z N Q> §=30 3 (e~ x) () =)
Then this T? has the T?-distribution with Z?Zl N; — q degrees of freedom.

Proof. Since x5 ~ N (p®, X), we have

(7 i 1 (7 12
(10 15) = a0 (0.85).

and

q q q
S0 = 35 (50 - u) ( %
=1 =1 i=1

On the other hand, we can write

@w
v

c (i Bix® — u) ~N(0,%).

i=1

N;—1

zq: i (x — 0 (x& — x0T zq: 20 (20T
1=1 a=1

i=1 a=1

where z) are independent and 28 ~ N(0,%). Hence,

= e (Z Bix — u) s-! <\/E <Z Bix) — M))

has the T2-distribution with > | N; — ¢ degrees of freedom.

Lemma 4.4. Let x1,...,X,, be independent samples from N (po, Xs) for i =1,...,m. Define

N N
Z = E aaXeq and zo = E baXa,
a=1 a=1

then

Cov(z,22) Zaab Yo
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Proof. The definitions mean

X1
Z] = [all asl aNI] X2 and 1z, =
XN
then
Cov(z1,22) = [all ao1 aNI] Cov
b]
0
:[all asl aNI] .
0

N
=) b
a=1

Lemma 4.5. Let {xg)} fora=1,...
We suppose N1 < Ny and define

.

fora=1,...,N1. Then we have

G — _ ()
= — a = Xy
y Nlazzjly
and

21-’-%22»

Cov(ya,¥Yao') = {0

)

Proof. We have

1 &
yzﬁl ZY(X

1

, N; be independent samples from N(u( )

o [N 1 3o

_ L _ 21 (2 2
= X X, + X
Ny O; Ny VN1 Ny /;1 s

X1
(D11 byl onI | ™2,
XN
1 Tx b I
o | | % b1
xv] |xx]/ [pyt
0 -~ 07 [bI
S oo 0| |boI
0 XN by

O

3;) fori = 1,2, respectively.

2 (2)
\/NlNQ Z Ny ZX

<(2)

Xa

a=a,
otherwise.

1 &
— (2)
LD
7=1

e @ L i Nl X2 4 Z

Nl a=1 v
Ny

1 N- 1

(1) _ (@2 _ 12

X X (-

Ny ; No

75((1) _ )—((2)
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We first consider the case of & = . The independence means the covariance matrix of [x&l); zo]" has

>, 0
0 x|’

the form of

where

N 1 N 2) 1 Nz
= /1y 2 _ - (2)
= Xy + X XA
VN, VNI N, ﬂ; Fo Ny ;1 v

Hence, we only needs to focus on the covariance matrix of

2=
p
N
»

Zoy = —

Q

! R e
TR £ Z M ; .l

o

-1
-y Lo Yo (L L N e
NN, N) VNN, Ny Ny )

y=1
Ny 1

23 () Y ()
y=a+1 NNy N y=N1+1

Lemma 4.4 means
Cov(za.za) = | (a 1)( 1 1)2+ 1 1 N
V(Ze, Zo) = — _—— — —_—— — — [ —
VNi{Ny No VNi{Ny No Ny

+ (N —a) (\/]Vlli%—]é)Z(NQ—NI) i (_1@2)22

y=N1+1
9 2
1 1 1 1 N (N2 — Np)?
=[NV = 1) [ —— — — _— 2 = VU |z
<( ! )<\/N1N2 N2> +< NN, N N2> + N2 2
Ny
=_1%
NQ 2,
which means Cov(ya,ya) = 21 + (N1/N3)Xs.
Then we consider the case of a # a’. We have
[Yal
N1 N2
N 1 1
—x® _ M@ @ _ L @ _ (@ _ @
X(x 2Xa NlNQﬁZ:lX/B N2Z:1X'y (M M )
= ¥
N AL 1 &
— (D (1) 71( 2) <2>> ( 2) _ <2>> - ((2) (2))
X X -+ X X,
p W p WNzﬁ; p M; ¢~
N1 No
N 1 1 1
@  _ ;( ) ©) _ 2 @) _ @ _ 2
x » N2 * B )+<\/N1N2 NQ)/;(Xﬁ K ) 2 7; )
y=N1+1
and
Yo — Elya]
N No
W0 &( @) <2>)+( ! _1) (x - u®) L (x2 - u®)
a N, ot TH VNN, N, 62:1 )TN, e T



The independence means

E|(¥a — ElYal) (Vo — Elya]) ']

N 1 1 1 1)? Ny — Ny
— 9,/ B B ) Mm, 2
N2<\/7N1N2 N2> 2 (Wvljvz N2> 120 T 2

1 VN 1 2 1 1M
=(-2(— — + - + = N1+7*72
Ny Na+/Nay N1 N Noy/ N1 N, N2 No N2

=0.
O
5 Sample Correlation Coefficients
Lemma 5.1. Ify1,...,yn are independently distributed, if
v
Ya =
v
has the density f(yao) and if the conditional density of y&2 given ya is f( | y((yl)) fora=1,...,n.
Then in the conditional distribution of y§2), . 7y( ) given yg ), . ,yg\,), the random wvectors yg2)7 . ,yﬁ)
are independent and the density of y&z) 18 f( 2 | y(l)).
Proof. The marginal density of y(l) e ,yg\}) is
N
H fi (Y(l)
a=1
where fl( (¢ )) is the marginal density of y( and the conditional density of y( ) ,yg\,) given y1 yeen ,yg\})
is
N N
Ha 1fyOé HfYa),Ya) _H |y
1 - [e]
I AGS ao fys)) a=1
O
Theorem 5.1. If the pairs (z11,221), - - -, (#1n, 22n) are independent and each pair are distributed according
to

2
{Zla}w/\/<[0},[ a1 Ula;ﬂ), where a = 1,...,n,
29 0 0102p 05

then given z11, 212, - - ., 21n, the conditional distributions of

h— ZZ:l 22a”1a and i _ zn: (2204 - bzla)2
Z?:l Z%a 2 —

are N (5, 02/02) and x2-distribution with n—1 degrees of freedom, respectively; and b and u are independent,

where

ﬂ:@, 0?2 =02(1—-p% and czzz,zfa.

01
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Proof. The conditional distribution of za, given z14 is N(B214,02%). Let v; = [zi1,..., 2] for i = 1,2.
Lemma 5.1 means the density of v given v; is N'(8v1,0I) since 221, . . ., 29, are independent. We also have

.
T T ViV
vy (Vo —bvy) =v, (Vz - — v1> =0

Vi Vvy
and
u=(vo —bvy)  (va — bvy) = vy Vo — 2bv| vo 4 b?v] v = v, vy — bPv] vy,
Apply Theorem 3.4 with x4 = 22, and y, = Z:Zl CayZoy for o =1,...,n, where the first row of orthogonal
matrix C is (1/¢)v{. Then yi,...,y, are independently normally distributed with variance o2 and means
n n
E[y] = Z c1yE[z24] = 20175217 = Be,
~y=1 ~y=1
and

Elya] = Z carEl22,] = anvﬁzl'y =0.
~y=1 ~y=1

Thus, we have

2271 22a”la 2271 CZ22aCla 'A% 02
b= o= = L= =N, :

Yie1 Ha c? c 2
and
n n n n
u= 2, =0 A =D vy = vl
a=1 a=1 a=1 a=2
which is independent of b. Since we have y, ~ N (0,02) for a = 2,...,n, the random variable u/c? has a
x2-distribution with n — 1 degrees of freedom. O

Theorem 5.2. If z and y are independently distributed, x having the distribution N(0,1) and y having the
x2-distribution with m degrees of freedom, then t = x/\/y/m (has t-distribution with m degrees of freedom)
has the density

Proof. The joint density of x and y is

1 z? 1 m_] Y
fm,y(x7y) == \/ﬂ exp (—2> . ng 2 exp (_5) .

The definition of ¢ means z = t\/y/m, then the joint density of ¢t and y is




The density of ¢ can be obtained by integrating out y. Consider the expression of gamma function
+oo
I'(«) :/0 t* L exp(—t)dt
+o0 2 a-1 2 2
S [ PR
= <t2 + 1)Cy/ﬂmyo‘_lexp <— (tz + 1) y) dy
2m 2 0 2m 2

where we use the substitution
t= e 1
S \2m 2
m+1

Connecting (9) and (10) with a = 5=, we have

<

+oo
Jilt) = /0 Fot) dy

1 Foo 2 1 -1
T2% / AT +5)y) oy dy
2% ymr D (=) f, TP\ \am T2
B 1 T op(mtl
T 2% Jmmw *3 2

:ff(m;;l) (t ! 1)

O

Theorem 5.3. Let us consider the likelihood ratio test of the hypothesis that p = pg based on a sample
X1,...,XyN from the bivariate normal distribution

NI o 0102p
po| " |o102p o3
The set § consists of 1, 2, 01,02 and p such that

01>0, 02>0 and—1<p<1

and the set w is the subset for which p = py. The likelihood ratio criterion is

sup, L(x.8) _ ((1— )1 —r2)\*
supg L(x,0)  \ (1 —por)? ’
where
a a a N 1 N
_ 12 _ |e aiz| _ = T - _ L
r—ian — A [am GQJ ;(XQ X)(Xoq —X)  and X N;Xa.

Proof. We have shown in the section of T2-statistic that the likelihood maximized in € is

2

) _x 1
max  L(p,£) = (21)7% (det(Sq)) " * exp (pN>
pERP ZeSHT 2

where

N N
1 . B 1 _ \T a1 a2
3o = NA with x = N E_ Xa, A= E (Xa = X)(xa —X) = [am a9 and p=2.

a=1
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11022 — 12021

)

Then we have

det(EQ) = N2
which implies
NN exp (—N) NYexp (—N)
max ++L(;L,E): ~ = ~ N K-
HERP ZES, (27T)N (a11a22 - algagl) 2 (27T)N(1 — 7“2)?(1121@222
Let 02 = 0109 and 7 = 01 /05. Under the null hypothesis (p = po), we have
i ___Po
1 2

det(X) = 0202 — olo?pi =0 (1 —p3), T '= — 71 01102

1—p5 | _ £0 =

0109 0’%

and
(Xo — %) T2 H(xq — %) =tr (=7'A)

M=

a=1
__ b (o 2pot12 | 022
1-— pg 0% 0102 0%
1 (a11
=55 | — —2poai2 + Ta22> .
T\

Then the likelihood function under the null hypothesis (p = po) is
1 a1 /T — 2poaiz + Tass
exp [ —
)

(2m)N (1~ p§) ¥ (o2 202(1 — p3) ) (11)

The maximum of (11) with respect to T occurs at
7= ai/az,

\/ﬁ\/@(l—m?‘))' (12)

then the concentrated likelihood is

1
exp
N (1= ) E (o2 (S
The maximum of (12) occurs at
o _ Vo Va22(1 — por)
N1-p3)

exp(—2)zV=2(b - Nz)

which is because of f(x) = exp(—b/xz)/z" leads to

, exp(—2) - L 2N —exp(—2) . NaN-!
fi(z) = 22N = 22N :
The likelihood ratio criterion is, therefore,
N
wmuxm_(u—%m—ﬁvz
supg L(x, ) (L= por)?
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Lemma 5.2. For random vector

T
X = NN(uaE)7
Lp
where
011 012 ... O1p
H1
021 0922 ... 02p
p=1: and 3=
Hp
Op1 Op2 ... Opp

Then E[(z; — pi) (x; — p1) (e — pw)) = 0 and E[(z; — pi) (25 — ) (wr — pie) (21— )] = 04500+ 0in0j1 + 010 -
Theorem 5.4. Let

N
An) = 37 (xa = %x) (xa — %)

where X1,...,Xy are independently distributed according to Np(pu,X) and n = N — 1. Then the limiting
distribution of

B(n) (A(n) — nX)

_ 1
=7
s normal with mean 0 and covariance E[bij(n)bkl(n)] = 0ik0jI + 040 k-

Proof. We have
n
A(n) = Z 207,
a=1

where z1, ..., z, are distributed according to NV'(0,X). We arrange the elements of z,z_ in a vector such as

- o -
fla

Zlar2a

Ya = 2

The second moments of y, can be deduced from the forth moments of z, by using Lemma 5.2, that is,
Elziazja) = 0ij,  Elziazjazkazial = 040k + 0ikoji + 0uojk,
and
E[(ziazja — 0ij) (2kaZia — Okl)] = Oik0j1 + 0it0jk. (13)

Arranging the elements of 3 and A(n) as

o1 [a11(n)]

o12 aiz(n)
v = and w(n) =

022 (n) as(n)

L9pp | _app(n)_
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we obtain

Since E[y,] = p and covariance of y,, satisfies (13), the multivariate central limit theorem implies the desired
result. O

Remark 5.1. In the analysis for the asymptotic distribution of sample correlation, we apply this theorem
with

_ o o2l (1 p
A(n)=C(n) and 2[021 022]{p 1}

Then the covariance matriz of limiting distribution of the vector

1 C”(TL)
vn(u(n) —b) = i\ | (n)| —nb
cij(n)
18
011011 + 011011 012012 + 012012 011012 + 012011 [ 2 2p? 2p
012012 + 012012 022022 + 022022 021022 + 022091 | = [2p* 2 2p
011012 + 012011 021022 + 022021 011022 + 012021 12 2p 1+ P’
Theorem 5.5. Let x1,...,xn be a sample from N,(p,X) and partition the variables as

<L) M(l) )IPPIE Y
T [X(ZJ BT [N(Q)] and 3= {221 222] '

Define B = 2122521, Y112 =311 — 2122521221’

oo 1 L[
X = L—((?)} -N Z <@

a=1

N
and A — [gi ig] _ ;;m x0T
Then the maximum likelihood estimators of u(l), u(z), B, 3115 and oo are
pM =x0 4@ =x2 B= ApAL
o= . (A1 — ApAL Ay) and B = %Azz

Proof. The correspondence between 3 and (3112, B, 3a2) is one-by-one since
B2 =By and T =35+ BIyuBT,

which implies the desired result. O

6 The Wishart Distribution

Theorem 6.1. Let z1,...,2zy,be independently distributed, each according to Nj,(0,X), where n > p; let
n
A= Z Zoz, =TT
a=1

where t7; = 0 for i < j, and tj; > 0 fori=1,...,p. Then the density of T* is

Pt exp (— %tr(E’lT*T*T))
dot(E) [T (n +1- 1)

p(n—2) p(p—1)
2 4 (
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Proof. Let C be the lower triangular matrix (c¢;; = 0, ¢ < j) such that ¥ = CCT and ¢; > 0. Define
Yo = C7 'z, for « = 1,...,n, which are be independently distributed, each according to N,(0,I). We have
T =", Cy,lyTCT CTTT'CT. Let T = C~'T*, then the matrix T is the lower triangular with
t;; > 0 and we have

TT =C'T'T'C ! =Y Clzaz[C = yayl.
a=1

The lemma in slides have shown that random variables ¢;1, .. .,%;;—1 are independently distributed and ¢;; is
distributed according to N(0,1) for i > j; and t;; has the y2-distribution with n — i+ 1 degrees of freedom.
Hence, the density of w = t2 is
1
23+ 1-0D (L(n 41 —4))

w%(n+1_i)_1 exp (_E)
2
and the density of t;; = /w is (using dw/dt;; = 2t;;)

(tzl)%(nJ’»lii)il exp 7@ . (2t) = - ! tn_7 exp fi
i 9 i 2,,,_1_1 - i B

1
2:(+H1-0D (L (n 41 —9))

Then the joint density of ¢;; for j =1,...,4,¢=1,...,pis

) e L2
Ssn VI 2T (G 1)
(4Z8) ¢ el

:g )= EZ"’?IF@WH_Z-»

1 D i 2 n—i
exp (_5 i=1 Z] 1tu) i= 1tzz

p(n—2) p(p—1) D

257 o1 [P T (3(n+1—14)) '

The Jacobian of the transformation from T to T* = CT can be written as

11 cn 0 O -+ 0 - 0 t11
;1 X C22 0 s 0 s 0 to1
t§2 X X Cog - 0 s 0 too
1 X X X gy -0 tp1
_t;p_ | X X X .. X oo Cppl |tppl

Since the matrix of the transformation is triangular, its determinant is the product of the diagonal elements,
namely, []_, c¢i;. The Jacobian of the transformation from T to T* is the reciprocal of the determinant.

i=1 "’
We also have t;; = t;/ci;, = det(C) det(CT) = det(X) and

zlu

P 1

>3 =u(TT) =t (ciTT )

i=1 j=1

—tr (T*T*TC‘TC‘1> = tr (T*T*TE‘l)
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Then the density of T* is

27z n+172)

exp (—ltr (T*T*TE )) (s e (e N\ T
p(n=2) pp=1) Iy : ch‘i
: T (5(
exp (—1tr (T*T*TE )) Pt (ﬁ )"
= Cig

p(n—2) p(p 1)

27 @ L'(i(n+1-14)
exp (fltr (2 1T T*T)) i 1t;"z" ‘
225 M (det ()8 [, T (A(n+1—-14))

i=1

O

Theorem 6.2. Let z1,...,2z, be independently distributed, each according to N'(0,X), where n > p. Then
the density of A =" _ 7,2} is

(dﬁ(A))% exp (—3tr (Z7'A))
2F 5 (det(2))F [T02, T (3(n+1—14))

for A positive definite, and 0 otherwise.

Proof. Following the proof of Theorem 6.1, we only needs to consider the transformation from T* to A. The
relation A = T*T* " means we can write

i
ani = »_thity; for h>i.
j=1
Then we have
Oap;
oty

=0 fork>h; ork=h,10>i1.

that is, dap:/0t;;, = 0 if k,[, is beyond h,¢ in the lexicographic ordering. The Jacobian matrix of the
transformation from A to T* is a lower triangular matrix with diagonal elements

8(th
ot =2y, for h=1,...,p;
O s
a?i” =t;, for h>i;
hi

The determinant of the Jacobian matrix is therefore

9P Ht* p+1—1

The Jacobian of the transformation from T* to A is the reciprocal. Hence, the desnity of A is

n—1i _ -1
Pt exp (— 3tr(ZTIA)) or ﬁt;}pﬂﬂ‘
1—1)) pale}

p(n—2) P(P 1)

255 T (det(2)) 2 [T, T (3(n +
v 1th" P 1exp(—ltr( 1A ))

o gt (det(3X0))2 L(i(n+1-1)
B (det(A))"%’” exp ( - ltr(z IA))
2% p 2 (det(X))2 T (Gn+1—i )

o1



Corollary 6.1. Let x1,...,xx be independently distributed, each according to N,(u,X), where N > p.
Then the distribution of S = %ZaNzl(xa —X)(xq — %) is W(X,n).

Proof. The matrix S has the distribution of

where each 2L, ..., o are independently distributed, each according to A(O, %E) Theorem 6.2 implies

this corollary. O

Lemma 6.1. Given B positive semidefinite and A positive definite, there exists a non-singular matriz F

such that FTBF =D and FTAF =1, where D is diagonal.

_1
Proof. Let the spectral decomposition of A be A = UAEAUX and E =UaX,?, then ETAE =1. Let the
spectral decomposition of B* = ETBE be B* = UB*EB*U;;*, then

¥p- = Up.B*Ug- = UL.E"BEU3-.
Letting F = EUg+ and D = g« proves this lemma. O
Lemma 6.2. The characteristic function of chi-square distribution with the degree of freedom n is
o) = (1 —2it)"%.

Proof. Let x be distributed according to y2-distribution with the degree of freedom n, then its density is

f(z) = ml(g)arg_l exp (—g) .

We have (using the density of y2-distribution with the degree of freedom 2k + n)
6(t) =E [exp(ita)]

+oo
1 n
z/ exp(itz) - —r———22 exp (—E> dx
0

27T (3) 2

1 oo (X (itx)* .
Erell (;_() g >‘” tep (-3) e
7 1 o (1t)k 400 5
E%r(g)kz:o k!/o o 16’“’(”) dz
_ 1 o (i)* s oo 1 k2-1
_Q%F(%)kzzo X ok+ F(k’—!—f)/o 2k+%F(kz+g)x+ exp<—*) dx
IS R < N ) LN n
_2%r(g)kzzo 2 (b 5)

00 (2t)k k—1
sty 116+ 3)

k=1 =0
=(1-2it)"%

For the last step, we consider Taylor expansion on f(z) = (1 —2)~% at = = 0, that is

= (0 K .on
= H= =Y G g).

We take z = 2it. O
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Theorem 6.3. If z1,...,z, are independent, each with distribution N,(0,X), then the characteristic func-
tion of a11, ..., app, 2012, . ..,2ap_1,, where a;; is the (i, j)-th element of

is given by E [exp(itr(A®))] = (det (I — 21@2))_%, where © € RP*P 4s symmetric.

Proof. The characteristic function of a1, ..

-y Qpp, 2a127 ey 2ap,1’p is

E [exp(itr(A®))]

=E ;eXp (itr (i zazl@> >]
=FE :exp (1 tr (; zl@za> >]
=E -exp (1 zn: zge)za)]

H exp iz @zaﬂ

(IE [exp (1z QZ)])n ,

where z ~ N,(0,X). Lemma 6.1 means there exists non-singular matrix F such that

F'S'F=1 and F'OF =D,
where D € RP*P is diagonal. If we set z = Fy, then
E [exp (iz' ©z)]
=E [exp (iy 'F'©Fy)]
=E [exp (iy ' Dy)]

Note that the term of E [exp (i djjy?)} is the characteristic function of the y2-distribution with one degree
of freedom, namely (1 — Zidjj)’%. Thus, we have

P
E [exp (iz' ©z)] = [[(1 - 2id;;)% = (det(I - 2iD)) 2.
j=1
We also have

det(I — 2iD)
=det (F'=7'F - 2iF ' OF)
=det (F' (7' - 2i0@) F)
=(det(F))*det (X! — 2i©)
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and FTX~!'F = I means det(F) = (det(X))z. Combing the above results, we obtain
det(I — 2iD) = det(X) det (27" — 2i©) = det (I — 2iOX)
and

E [exp(itr(A®))] = (det (I — 2iO%)) "¢ .

O
Theorem 6.4. Let A and X be partitioned into q and p — q rows and columns,
A11 A12 E11 E12
A= , > =
|:A21 A22 221 Z:22
If A is distributed according to W(X,n), then Aqy is distributed according to W(X11,n).
Proof. The assumption means A is distributed as A = 22:1 7,7, , where the z, are independent, each
with the distribution A/(0,X). Partition z, into subvectors of ¢ and p — ¢ components such that
Zo = i
S
Then zgl), . ,z&n) are independent, each with the distribution A(0,X11), and A1y is distributed as
= T
> 2P (=)
a=1
which has the distribution W(311,n). O

Theorem 6.5. Let A and X be partitioned into p1,...,pq Tows and columns with p = p1,...,pq,

A o Ay Y11 oo Xy
A=l o ==
Ap - Ay X o g
If ¥ =0 fori # j and if A ~ W(X,n), then Ai1,...,Aqq are independently distributed and Ajj ~
W(X,;,n) forj=1,...,q.
T

Proof. The assumption means A is distributed as A = Y _, z,2,,, where the z, are independent, each
with the distribution N (0, X). Partition z, into subvectors

n
Zo =
z((lq)
as A and ¥ be portioned. Since X;; = 0, the sets zgl), oz ,zgq), ..,2'? are independent. Then
An=>"_, P (z&l))—r, A =30 L (z&q))T are independent. The rest of the proof follows from
Theorem 6.4. O]

Theorem 6.6. If xi,...,xy are independent, each with distribution Nj(p,X), where

or 0 -+ 0
0 09
3= .
0 0 - oy



then the density of the sample correlation coefficients is given by

where n = N — 1.

Proof. The density of A is

We consider the transformation
1. aij = faii \Jfajj rij for i < j,
2. a;; = a;; otherwise,
which is from
{rij i<y, i,j=1,...,p}U{au:i=1,...,p}
to
{a;j i<y, 4,j=1,....,p}U{ayu:i=1,...,p}

The determinant of Jacobian for this transformation is

p i—1 4
p—1
| I — 2
H Vi \/Qj5 = (2
i=1j=1 i=1

The joint density of {r;; : ¢ < j, 4,7=1,...,p}U{ay:t=1,...,p}is

(det (vaz vagryl,) " ep (-3 X0, 52) 2

Zp P 5 n
22 [[i05Tp (5) i=1

n—p—1 n—p—1
(TFya) (et (lrigl,)) 7 exp(—30, %) o o
= Fyp— 'Han‘

27 [[_ 0T (%) i=1
n—p—1 o1 ais
(et (gl ) prodTew (-52)
Ly (%) i=1 270
where r;; = 1. Let w; = a;;/(204;), then
o at " exp (— 2“?3_) S n
/ “ — ) day; = / u? ! exp (—u;) du; = F(f).
0 220 0 2
Combing all above results proves this theorem. O

Theorem 6.7. If A has the distribution W(X,n) and X has the a prior distribution W=(®,m), then the
conditional distribution of X given A is the inverted Wishart distribution W1 (A + ¥, n +m).
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Proof. The joint density of A and X,

HA D) :(det(A))ﬂfzf exp (;%tr (Z1A)) (det()) ¥ (det( )) 3 meXp (~itr (¥21))
272 (det(X))2 T, (ﬂ) 2% ( ) ”
_ (don(®))* (det(2)) "5 (det(A)) E exp (3t (A + W)=7))

(mtn)p

27T, (3) T (%)
for A and X are positive definite. The marginal density of A is the integral of (14) over the set of 3 positive
definite. Since

1:/w*1(2|A+\y,n+m)d2

ntm+pt1

/ (det(A—i—‘I’)) C(det(Z))TT 2 exp (—itr (A+®)x1))

25T, (242)

we have
f(a) = [ £(a, %)
_ (det(®))F (det(A)) (det(X)) 2 exp (—1tr (A + B)%1))
“nonm == =
_ (det(‘I'))% (det(A)) = n+m . ntm
() e ey
Then
_ f(Z,A)
10 =)
_ (det(A + )" (det(S =) exp (—1tr (A + ®)E1)

(m+4n)p

275 T, (M)
HEA+T,n+m).

7 Multivariate Linear Regression

Lemma 7.1. If A € RP*P gnd G € RP*P are positive definite, then tr (FAFTG) > 0 for non-zero F € RP*P,
Proof. Let A=HHT and G = KK, then

tr( FTG)
=tr(FHH F'KK")
=tr(H'F'KK'FH)
=tr(H'F'GFH) > 0.
O
Theorem 7.1. If X, is an observation from Ny(Bz,X) for « = 1,...,N, where [z1,...,zy] € RV*? of
mnk q 18 gwen 3 e R?™*9, B € RP*? gnd N > p+ q, the maximum lzkelzhood estimator ofB 18 given by

= CA~! where

N N
_ T _ T
C= g XaZg and A= E ZoZy, -
a=1

a=1
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The mazimum likelihood estimator of 3 is give by

1 Y ; :
= v Z(Xa — Bz,) (%0 — BZ(X)T

Proof. The likelihood function is

N

1
L= = ~exp | —= x, — Bz,) 27 Y (x, — Bz,
(2m) % (det(Z)) ¥ p( 2 g( pE )>

Recall that in the maximum likelihood estimation for normal distribution, we use the fact
N
Z(XQ—H)TE_l(Xa — ) =tr < 12 u)T>
a=1

and

(Xa — 1) (xa — 1) "

NE

Q
I
—

(xa =) (Xa =) + (xa =) (B —p)" + (B —p)(xa —@)" +(B—p)(B—p)")

I
] =

Q
Il
-

(%0 =) (xa —@) " +(B—p)(B—p)").

I
] =

Q
Il
-

We shall do the similar thing for the exponential in L. We have

(xq — B2z4) (x4 — BZQ)T> ;

1=

—Bz,)" S Hxq — Bz,) = tr (E_l

uMz

and for any H € RP*? it holds that

(X — BZo) (X4 — Bza)T

M=

Q
I
-

I
] =

((Xa —Hz,)(x, — Hza)—r + (xo — Hz,)(Hz,, — Bza)—r + (Hz, — Bz, ) (x4 — Hz(,t)—r

a=1
+ (Hz, — Bz,)(Hz, — Bza)T).
We hope
N N
Z(Hza —Bz,) (X0 — Hza Z —Hz,)(Hz, — Bza)T =0
a=1 a=1

Hence, we select H = H as follows

Hza Hza - Bza)T =0

Mz

;
Z —Hz,)z, (H-B)"
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a=1 a=1
N N -1
—H = Z XoZy (Z zazl>
a=1 a=1
Then we have

N N
Z(Xa — Bz,)(xq — Bz,)' = Z ((Xa —Hz,)(x, — Hz,)' + (Hz,, — Bz,)(Hz, — Bza)T).
a=1 a=1

Lemma 7.1 means

N
tr (E_l Z(XO‘ — Bz,)(x0 — Bza)T>
N
—tr (z-l 3 ((xa — Hz,)(xo — Hz,)" + (Hz, — Bz,)(Hz, — Bza)T>>

N
>tr (21 2:(x(l — I:Iza)(xa — I:IZQ)T> ,

where the equality holds by taking B = H. Hence, the maximum likelihood estimator of B is given by
B = CA~!. Using Lemma 3.1 with G = X and

N
Z — Bza o — Bza)T,
we obtain the the maximum likelihood estimator of ¥ is 3 = %D. O
Remark 7.1. Let
x| z]
X=1": and 7 =
3 zy

We consider the least square problem.

. 2
Jmin f(B) 2 LB2T X7

Then, taking the gradient of f be zero means

1
Vf(B) = < BZ'ZB' -BZ'X + 2XTX> =BZZ' -X"Z=0.

8B
Hence, we have B = XTZ(ZZ7)"' = CA~' = B.

Remark 7.2. The proof means

N

Z(X“ — Bz,)(xq — Bzy,) "

a=1
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N N
=Y (Xa —Bza)(Xa — Bza) " + Y (Bza — Bza)(Bza — Bza) "

a=1

N
=N3 + (B - B) (Z zazg> (B-B)"
a=1

=N+ (B-B)A(B-B)".

Hence, the joint density of x1,...,Xn can be written as
1 1<
Ty—1
exp | —= X, — Bz,) X7 (x, — Bz,
(2m) % (det(3)) * ( 2 ;( ) | )>

v|Z

1 A )
~em T P\ 2" = ;(Xa*Bza)(xa—Bza)

:(277)g(d1et(2))12v exp (—;tr (E_l (Nﬁ +(B-B)A(B— B)T))> 7

which implies B and & form a sufficient set statistics for B and 3.

Theorem 7.2. The maximum likelihood estimator B based on a set of N observations, the a-th from
N (Bz,, X), is normally distributed with mean B, and the covariance matriz of the i-th and j-th rows ofB
is Jl-jAfl, where A = Zivzl z02) . The mazimum likelihood estimator ) multiplied by N is independently
distributed according to W(X, N — q), where q is the number of components of z4 .

Proof. For the estimator B, we have

N N N
ZxazlAll = Z BzazlAf1 =B <Z zazl> A"'=B
a=1

a=1 a=1

E[B] =E

and

I
»
] =
M=
(=%
5
Q
:s
QN—|
>

From Theorem 4.6, it follows that

N
N =3 " (xo — Bza)(xo — Bza) "

[e3

Il
=

I
M=

(xaxz — XazIBT — Bzaxg + BzaleT)

Q
I
-
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is distributed according to W(X, N — q).
Theorem 7.3. The least squares estimator B is the best linear unbiased estimator of B.

Proof. Let

~ N P
51'9 = Z Z fjaxja

a=1j=1

be arbitrary unbiased estimator of 8;4, which satisfied

N ..
, J=u,h=g,
jafha = .
3=

, otherwise.
Let a" be the (h, g)-th element of A~1, then the least square estimator can be written as

N g
A § § h
ﬁig = TiaZhal ga

a=1h=1

N
where A =Y 7,2/ . Then we have

E[(Bzg - 619)2]
ZE[(B@ — Big + (Big — Big))Q]
=E[(Big ~ 5ig)°] + E[(Big — Big) (Big — Big)] +E[(Big — Big)’]

Let w;q = Zjo — E[20]). Since both Big and Big are unbiased estimator of 3;,, we have

N »p N ¢
ﬁig - Big = Z ijozujcw Big - ﬁig = Z Z uiazhocahga

a=1j=1 a=1h=1

and

P q
/Big 519 = Z Z (fja - 5ij Zhaahg> Ujas
a=1j=1 h=1
where d;; = 1 and d;; = 0 for ¢ # j. Then we have

[(Bzg 519) (529 Big)]

N N g P q ,
E Z Z Z Zhaahguia Z <fj’Y - 5ij Z Z}L"‘/a‘h g) Ujry

a=1~y=1h=1 =1 hi=1
h h
= § § E Zha'"? fja - §ij Zpraat? 04
a=1h=1j=1 h—1
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q q
—0..a99 . hg  h'g
=007 — 044 app G~ a

h=1h/=1
:auagg — O’Z‘iagg =0.

Thus
E[(Big - ﬁig)2] > ]E[(Big - 5%‘9)2] + E[(Big - Big)2] > E[(Big - 5%‘9)2]‘

Theorem 7.4. The likelihood ratio criterion
N
2

(det (S) T
(det (3)) *

for testing the null hypothesis By = 0 is invariant with respect to transformations x}, = Dx, fora=1,...,N
and non-singular D.
Proof. The estimators in terms of xJ, are
B* =DC'A = DB,
1
So=% > (Dx, — DBz,)(Dx, — DBz,)" =D3qD ",

a=1

B3, =D(C; — BjA;2)AL; = DBy,
N
s 1 . ~ T N
o=y az::l (Dy, — DBy,2?)(Dy, — DBy,2?) =DX,D',

then

Theorem 7.5. The statistic
g (det(Ay))?
(det(A))?

Vi =

is invariant with respect to linear transformation
x*@) = cx@ + 9,
Proof. We have

ZJMMW%_MJMW%@M%:ZJMMM%:%

W= (det(A*)]  (det(CACT))3 (det(A))3

O

Theorem 7.6. Given a set of p-component observation vectors xi,...,xy from N(u,X), the likelihood
ratio criterion for testing the hypothesis

Y= O'g‘llo
where Wq is specified and o? is not specified, is
(det(AW;")) >

~ -

(tr(A®G ") /p) =
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Proof. Let C be matrix such that
Cv,C’" =1

and x*, = Cx, u* = Cu, ¥* = CEXC'. Then we have
al T
tr(A*) = tr (Z (xp —x5) (x5 —%2) ) = tr(CAC") = tr(AC'C) = tr(A®; )
a=1

and
det(A*) = det(CACT) = det(C))?*det(A) = (det(¥)) ' det(A) = det(AT,').

Thus

N

(det(A*) (det(AW )=

(tr(A")/p)  (tr(ATh)/p)"

N
2

8 Principal Components
Theorem 8.1. Let 3 € RPXP be positive definite. A vector B with ||8||, = 1 mazimizing 8" X8 must satisfy
(E-MmDB=0,
where A1 is the largest root of
det(3 — AI) = 0.
Proof. Let
$(B,2) =B"EB-ANB'B-1),

where ) is a Lagrange multiplier. A vector 8 maximizing 3" X3 must satisfy

0= %ﬂﬁ’)\) =230 —2)3,
that is (3 — AI)3 = 0. The constraint ||3|, = 1 means X — AI is singular. Then A must satisfy
det(X — AI) = 0.
We also have
BTEB=28"8=)
which implies our result. O

Remark 8.1. For the second principle components 3, we require
0=E[3"x8" x| =E[8Txx V] = gTn8D = 3731,
Let

$2(B.\v)=B"E8-AB"B-1) - 208" 23D,
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We require

0= 22280 _ 238 — 208 — 2028,

B
Multiplying on the left by B(I)T, we have
0=280"58-280"8-2,80" 52380 — 9,
Therefore v =0 and B must satisfy (X — A\I)B =0 and B37BM) =0, where
det(3 — AI) = 0.
Hence, we should take \ by the second-largest root of det(X — AI) = 0.

Remark 8.2. For the (r + 1)-th step, we let

¢r1(BAV)=B"E8-NB'B-1)-2) »B" 24"

i=1
and
0= W =238 -2 -2 »3p".
i=1

Similarly, we have v; = 0 and (X — \;1)BY) = 0 and \; is the root of det(X — A\I) = 0
Remark 8.3. For the stationary point on surfaces x' X7 'x = C, we let

P(x, ) =x"x—Ax'E2 7k
Then

0= A 2x — 2\ !x,
ox

that is x = Ax. Thus the vectors B, ..., BP) give the principal axis of the ellipsoid. The transformation
u = B"x is a rotation of the coordinate axes so that the new azxes are in the direction of the principal axes
of the ellipsoid. In the new coordinates, the ellipsoid is

u' A lu=0C.

Theorem 8.2. An orthogonal transformation v = Cx of a random vector x with E[x] = 0 leaves invariant
the generalized variance and the sum of the variances of the components.

Proof. Let E[xx"] = 3. The generalized variance of v is
det(CECT) = det(C) det(X) det(CT) = det(X).

The sum of the variances of the components of v is

zp: E[v?] = tr(CECT) = tr(EC'C) = tr(T) = zp:E[:c?].
i=1 =1
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Theorem 8.3. Let x1,...,xy be N observations from N,(0,X), where 3 has p different characteristic
roots and N > p. Then mazimum likelihood estimators of A\i,..., A, and BW ..., BW) consists of the roots
AL > >0 of

det(2 — A\I) = 0
and corresponding vectors BV, ..., BP) satisfying H/é(i)”Q =1 and
(Z-ADBY =0
fori=1,...,p, where S is the the mazimum likelihood estimate of X.

Proof. When the roots of det(X — M) are different, each vector 3() uniquely defined except that it can
be replaced by —3(). If we require that the first nonzero component of —3(® be positive, then —3" is
uniquely defined. Then the variables g, A and B is a is a single-valued function of g and X. Hence, the set
of maximum likelihood estimates of p, A and B is the same function of f1 and X (restriction that the first
nonzero component of B9 must be positive). O

Remark 8.4. If 3 is non-singular, the probability is 1 that the roots of A1,..., A, are different. Please see
Masashi Okamoto. “Distinctness of the eigenvalues of a quadratic form in a multivariate sample.” The
Annals of Statistics (1973): 763-765.

Theorem 8.4. Let nS ~ W(Z,n) and (A1, BY), (\p, BP) be two distinct eigen-pairs of = with |31y =
18P ||z = 1, then

B30 g e ORRY: (€
B — and ———mm—.
A A

are independently distrusted as x2-distribution with n degrees of freedom.

Proof. We have
nS = Z 202,
a=1

where z,, are independently distributed as A(0, ). Then we have ﬁ(l)TZa ~ N (0, A1), since B(I)TEBU) -
)\lﬁ(l)TI@(l) = A;. Hence, it holds that

T n T n T 2
nBM s _ Z B Zazl/@(l) _ Bz, .
A1 —= A VA1 "

1 a=1

are distrusted as x2-distribution with n degrees of freedom We also have the similar result for Ap and B,

Consider that ﬁ(l)Tza and ﬁ(p)Tza are normal distributed with zero mean and
E[ﬁ(lﬁzaﬁoﬂza} _ 5(1>T]E[ZQZQT]5@> =80z = ) g gw =
Hence, we have proved the desired independence. O
Remark 8.5. Let [ and u be two numbers such that
1—e=Pr {nl < X%} Pr {)(,21 < nu}

Then we have

1 Tgg) O
1—e=Pr nlgnﬁ 5P ’nﬁ 5P < nu
A A
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MmTgg) g 'ga®
Pr{)\l < p lS'B ) A < )‘p}
u

max _1b"Sb min _1b'Sb
SPY{)\l < I\bllg;l : IIbll,=1 < )\p}

u

:Pr{Al 171 lp<)\p}:Pr{lp<)\p</\1<lll}.
u u

IN

9 Canonical Correlations

We consider the problem

max o' D97,
aTEuozzl

~ T Sy =1
where
Y X
Y= = 0.
{221 222]
Let
T AT BT
Y(a, v, A ) = o By — 5(01 Ypha-1) - 5(’7 Yooy —1).
The vectors of derivatives set equal to zero are
0 «, a)‘7
W =397 - A =0,
0 «, 1A7
77“ 8”7*/ 1) = Eirza — puXosy = 0.

Multiplication of above ones on the left by o and 4" respectively, we have

aTElg'y — )\aTEHa = 0,
Y B — py Bayy = 0.

The constraint means A = = o' 3157. Setting derivatives be zero also can be written as

A1 X al _,
DI —AX9 Y '

The positive definiteness of 3 means « # 0 and v # 0, then

=X bIP) _
det ([ o AEZQD o,

|« _ 211 0 _ 0 2:12
&= {7}’ A= [ 0 222} and B = [221 0 ]
We have the form of generalized eigenvalue decomposition

BE=)MAE and det(B—)AA)=0.

Remark 9.1. Let

If B =1, it is eigenvalue decomposition. For A > 0, we have
A7'BE =) and det(AT'B — ) =0,

which corresponds to eigenvalue decomposition on A~'B.
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Remark 9.2. At (r + 1)-th step, the uncorrelated conditions for u = a'xM and v =~"x? are

0 = Efuw;] = E[aTx(l)x(l)Ta(i)] =a'3a,
0= Efon] = B[ x®x® 5] = 37 Eppy 0,
fori=1,...,r. Then
Eluv;] = E[aTx(l)x(z)T’y(i)] = aTE[x(l)x@)T]'y(i) =a'27Y = a0 = 0.
Efvu;] = IE['yTx(Q)x(l)Ta(i)] _ ,YT]E[Xm)X(l)T} a® = T8, a0 = Ay TEy0y® = 0.
We now mazimize Elu,1v,11]. Let

\ r ' r .
Yrpr(a, v, A\ p) = ' Bioy — 5(0¢T2110 -1) - %(’YTEm"/ -1) - ;WGTEHG(” - ;9z"YT222’Y(Z)~

The vectors of derivatives set equal to zero are

81/}7“-4-1(057 v, )‘a Vv, 0)
oa

8 T a7 9 Av 5V7 9 " 7
Wi g’y 1:0) ST Sy — 30,5507 = 0.
=1

= Y12y — AXna— Z viZal =0,

=1

)T

Multiplication of above ones on the left by a9 and ’y(j)T for any j < r respectively gives

0= a2y - Ao 'Sha - 3 via® a0 = —va® 00,
1=1

T T T T ) T .
0=~ Sha -y Sy — Zgn(a) Sooy ) = _gj,Y(J) 2oy ).

i=1

Hence, we have v; = 0; = 0. Then the condition of derivatives is

—AX X al _,
o1 —AXa| |v ’

where \ satisfies

“AX15 X o
det({ S —AEQQD =0;

and o« and vy satisfy
a'Sha=1, vy Zuy=1, aTElg’y(i) =0, and ’yTEgla(i) = 0.
Theorem 9.1. The canonical correlations are invariant with respect to transformations

{Xm) —Cx),

@ = C,yx®),

where Cy and Cy are non-singular. Additionally, any function of X that is invariant (under any such
transformation) is a function of the canonical correlations.
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Proof. The canonical correlations of x*(1) and x*) are the roots of

0 = det ({—AC121101 C1X1,Cy ])
Co%01C]  —AC2%0sCJ

B C; o0 -AZ1 Zp c/f o
=det ({ 0 C2]> det ({ o A det o cI|)
which are equivalent to the canonical correlations of x() and x(2).
If f(EH, 212, 222) be a vector function such that f(Zn, 2127 222) = f(Clzlch, 012120; CQEQQC;)
for any non-singular C; and Cy. Let C; = AT and Cy = T'T, then f(C;X;,C],C;2,C5,CyX2,CJ) =
£(1, diag(A, 0),1). O
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