Lecture Notes of Multivariate Statistics

Weizhong Zhang
School of Data Science, Fudan University

June 6, 2023

1 Review of Linear Algebra

Theorem 1.1 (QR Factorization). Prove the following results for Gram-Schmidt orthogonalization

1. $r_{j j} \neq 0$ for all $i=1, \ldots, n$
2. $\left\|\mathbf{q}_{i}\right\|_{2}=1$ for all $i=1, \ldots, n$
3. $\mathbf{q}_{i}^{\top} \mathbf{q}_{j}=0$ for all $i=1, \ldots, n$ and $j<i$.

Proof. Part 1: Since each \mathbf{q}_{i} is a linear combination of $\left\{\mathbf{a}_{1}, \cdots, \mathbf{a}_{i}\right\}$, the entry $r_{j j}$ is zero means

$$
r_{j j}=\left\|\mathbf{a}_{j}-\sum_{i=1}^{j-1} r_{i j} \mathbf{q}_{i}\right\|_{2}=0
$$

then \mathbf{a}_{j} must be a linear combination of $\left\{\mathbf{a}_{1}, \cdots, \mathbf{a}_{j-1}\right\}$, which validates the full rank assumption on \mathbf{A}.
Part 2: Just use the expression of $r_{j j}$.
Part 3: Recall that $r_{i j}=\mathbf{q}_{i}^{\top} \mathbf{a}_{j}$ for any $i \neq j$. We can verify

$$
\mathbf{q}_{1}^{\top} \mathbf{q}_{2}=\frac{\mathbf{q}_{1}^{\top}\left(\mathbf{a}_{2}-r_{12} \mathbf{q}_{1}\right)}{r_{22}}=\frac{\mathbf{q}_{1}^{\top}\left(\mathbf{a}_{2}-\left(\mathbf{q}_{1}^{\top} \mathbf{a}_{2}\right) \mathbf{q}_{1}\right)}{r_{22}}=\frac{\mathbf{q}_{1}^{\top} \mathbf{a}_{2}-\left(\mathbf{q}_{1}^{\top} \mathbf{a}_{2}\right) \mathbf{q}_{1}^{\top} \mathbf{q}_{1}}{r_{22}}=0
$$

Suppose for $\mathbf{q}_{i}^{\top} \mathbf{q}_{j}=0$ for all $\mathbf{q}_{i}^{\top} \mathbf{q}_{j}=0$ for all $i=1, \ldots, n^{\prime}-1$ and $j<i$. Then for all $k=1,2, \ldots, n^{\prime}-1$, we have

$$
\mathbf{q}_{k}^{\top} \mathbf{q}_{n^{\prime}}=\frac{\mathbf{q}_{k}^{\top} \mathbf{a}_{n^{\prime}}-\sum_{i=1}^{n^{\prime}-1} r_{i n^{\prime}} \mathbf{q}_{k}^{\top} \mathbf{q}_{i}}{r_{n^{\prime} n^{\prime}}}=\frac{\mathbf{q}_{k}^{\top} \mathbf{a}_{n^{\prime}}-r_{k n^{\prime}} \mathbf{q}_{k}^{\top} \mathbf{q}_{k}}{r_{n^{\prime} n^{\prime}}}=\frac{\mathbf{q}_{k}^{\top} \mathbf{a}_{n^{\prime}}-r_{k n^{\prime}}}{r_{n^{\prime} n^{\prime}}}=0
$$

Then we prove the result by induction.
Theorem 1.2. Prove $\|\mathbf{A}\|_{2}=\sigma_{1}$.
Proof. Let $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$ be full SVD of \mathbf{A}. Then

$$
\|\mathbf{A}\|_{2}=\sup _{\|\mathbf{x}\|_{2}=1}\|\mathbf{A} \mathbf{x}\|_{2}=\sup _{\|\mathbf{x}\|_{2}=1}\left\|\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{x}\right\|_{2}=\sup _{\|\mathbf{x}\|_{2}=1}\left\|\boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{x}\right\|_{2}
$$

Then let $\mathbf{y}=\mathbf{V}^{\top} \mathbf{x}$. Since \mathbf{V} is orthogonal matrix, we have $\|\mathbf{y}\|_{2}=\left\|\mathbf{V}^{\top} \mathbf{x}\right\|_{2}=\|\mathbf{x}\|_{2}=1$. Hence,

$$
\sup _{\|\mathbf{x}\|_{2}=1}\left\|\boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{x}\right\|_{2}=\sup _{\|\mathbf{y}\|_{2}=1}\|\mathbf{\Sigma} \mathbf{y}\|_{2}=\sup _{\|\mathbf{y}\|_{2}=1} \sqrt{\sum_{i=1}^{r}\left(\sigma_{i} y_{i}\right)^{2}} \leq \sigma_{1}
$$

We attain the maximum by taking $\mathbf{y}=\left[\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right]$ and the corresponding \mathbf{x} is $\mathbf{V}\left[\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right]$

Theorem 1.3 (Cholesky Factorization). The symmetric positive-definite matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ has the decomposition of the form

$$
\mathbf{A}=\mathbf{L L}^{\top}
$$

where $\mathbf{L} \in \mathbb{R}^{\times n}$ is a lower triangular matrix with real and positive diagonal entries.
Proof. For $n=1$, it is trivial. Suppose it holds for $n-1$, then any $\widetilde{\mathbf{A}} \in \mathbb{R}^{(n-1) \times(n-1)}$ can be written as

$$
\widetilde{\mathbf{A}}=\widetilde{\mathbf{L}} \widetilde{\mathbf{L}}^{\top}
$$

where $\widetilde{\mathbf{L}} \in \mathbb{R}^{(n-1) \times(n-1)}$ is a lower triangular matrix with real and positive diagonal entries. Consider the case of n such that

$$
\mathbf{A}=\left[\begin{array}{cc}
\widetilde{\mathbf{A}} & \mathbf{a} \\
\mathbf{a}^{\top} & \alpha
\end{array}\right]=\left[\begin{array}{cc}
\widetilde{\mathbf{L}}^{\top} & \mathbf{a} \\
\mathbf{a}^{\top} & \alpha
\end{array}\right] \in \mathbb{R}^{n \times n}, \quad \text { where } \mathbf{a} \in \mathbb{R}^{n-1}, \quad \alpha \in \mathbb{R} .
$$

Let

$$
\mathbf{L}_{1}=\left[\begin{array}{cc}
\widetilde{\mathbf{L}}^{-1} & \mathbf{0} \\
\mathbf{0} & 1
\end{array}\right] \in \mathbb{R}^{n \times n}
$$

We have

$$
\mathbf{L}_{1}^{-1} \mathbf{A} \mathbf{L}_{1}^{-\top}=\left[\begin{array}{cc}
\widetilde{\mathbf{L}}^{-1} & \mathbf{0} \\
\mathbf{0} & 1
\end{array}\right]\left[\begin{array}{cc}
\widetilde{\mathbf{L}}^{\top} & \mathbf{a} \\
\mathbf{a}^{\top} & \alpha
\end{array}\right]\left[\begin{array}{cc}
\widetilde{\mathbf{L}}^{-\top} & \mathbf{0} \\
\mathbf{0} & 1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I} & \mathbf{b} \\
\mathbf{b}^{\top} & \alpha
\end{array}\right] \triangleq \mathbf{B} \in \mathbb{R}^{n \times n} \quad \text { where } \mathbf{b} \in \widetilde{\mathbf{L}}^{-1} \mathbf{a} \in \mathbb{R}^{n-1}
$$

Let

$$
\mathbf{L}_{2}=\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
-\mathbf{b}^{\top} & 1
\end{array}\right] \in \mathbb{R}^{n \times n}
$$

Then

$$
\mathbf{L}_{2}^{-1} \mathbf{B L}_{2}^{-\top}=\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
-\mathbf{b}^{\top} & 1
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I} & \mathbf{b} \\
\mathbf{b}^{\top} & \alpha
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I} & -\mathbf{b} \\
\mathbf{0} & 1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
\mathbf{0} & \alpha-\mathbf{b}^{\top} \mathbf{b}
\end{array}\right]
$$

Since \mathbf{A} is positive-definite, we have

$$
\alpha-\mathbf{b}^{\top} \mathbf{b}=\alpha-\mathbf{a}^{\top} \widetilde{\mathbf{L}}^{-\top} \widetilde{\mathbf{L}}^{-1} \mathbf{a}=\alpha-\mathbf{a}^{\top} \widetilde{\mathbf{L}}^{-\top} \widetilde{\mathbf{L}}^{-1} \mathbf{a}=\alpha-\mathbf{a}^{\top} \widetilde{\mathbf{A}}^{-1} \mathbf{a}>0
$$

Let $\alpha-\mathbf{b}^{\top} \mathbf{b}=\lambda^{2}$, where $\lambda>0$. Hence, we have

$$
\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
\mathbf{0} & \alpha-\mathbf{b}^{\top} \mathbf{b}
\end{array}\right]=\mathbf{L}_{3} \mathbf{L}_{3}^{\top}, \quad \text { where } \mathbf{L}_{3}=\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
\mathbf{0} & \lambda
\end{array}\right]
$$

which means $\mathbf{A}=\mathbf{L} \mathbf{L}^{\top} \in \mathbb{R}^{n \times n}$ where $\mathbf{L}=\mathbf{L}_{1} \mathbf{L}_{2} \mathbf{L}_{3} \in \mathbb{R}^{n \times n}$ is a lower triangular matrix with real and positive diagonal entries.

Theorem 1.4. Suppose $\nabla^{2} f(\mathbf{x})$ is continuous in an open neighborhood of \mathbf{x}^{*} and that $\nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0}$ and $\nabla^{2} f\left(\mathbf{x}^{*}\right) \succ \mathbf{0}$. Then \mathbf{x}^{*} is a strict local minimizer of f.

Proof. Because the Hessian is continuous and positive definite at x^{*}, we can choose a radius $r>0$ so that $\nabla^{2} f(\mathbf{x})$ remains positive definite for all \mathbf{x} in the open ball $\mathcal{D}=\left\{\mathbf{z}:\left\|\mathbf{z}-\mathbf{x}^{*}\right\|_{2}<r\right\}$. Taking any nonzero vector \mathbf{p} with $\|\mathbf{p}\|_{2}<r$, we have $\mathbf{x}^{*}+\mathbf{p} \in \mathcal{D}$ and so

$$
f\left(\mathbf{x}^{*}+\mathbf{p}\right)=f\left(\mathbf{x}^{*}\right)+\mathbf{p}^{\top} \nabla f\left(\mathbf{x}^{*}\right)+\frac{1}{2} \mathbf{p}^{\top} \nabla^{2} f(\mathbf{z}) \mathbf{p}=f\left(\mathbf{x}^{*}\right)+\frac{1}{2} \mathbf{p}^{\top} \nabla^{2} f(\mathbf{z}) \mathbf{p}
$$

where $\mathbf{z}=\mathbf{x}^{*}+t \mathbf{p}$ for some $t \in(0,1)$. Since $\mathbf{z} \in \mathcal{D}$, we have $\mathbf{p}^{\top} \nabla^{2} f(\mathbf{z}) \mathbf{p}>0$, and therefore $f\left(\mathbf{x}^{*}+\mathbf{p}\right)>f\left(\mathbf{x}^{*}\right)$, giving the result.

Theorem 1.5. Suppose \mathbf{x}^{*} is a local minimizer of twice differentiable $f(\mathbf{x})$ and $\nabla^{2} f(\mathbf{x})$ is continuous in an open neighborhood of \mathbf{x}^{*}, then $\nabla^{2} f\left(\mathbf{x}^{*}\right)=\mathbf{0}$ and $\nabla^{2} f\left(\mathbf{x}^{*}\right) \succeq \mathbf{0}$.

Proof. Suppose for contradiction that $\nabla f\left(\mathbf{x}^{*}\right) \neq \mathbf{0}$. Define the vector $p=-\nabla f\left(\mathbf{x}^{*}\right)$, which leads to that $\mathbf{p}^{\top} \nabla f\left(\mathbf{x}^{*}\right)<0$. Because ∇f is continuous near \mathbf{x}^{*}, there is a scalar $T>0$ such that

$$
\mathbf{p}^{\top} \nabla f\left(\mathbf{x}^{*}+t \mathbf{p}\right)<0,
$$

for all for any $t \in[0, T]$. We have by Taylor's theorem that

$$
f\left(\mathbf{x}^{*}+\bar{t} \mathbf{p}\right)=f\left(\mathbf{x}^{*}\right)+\bar{t} \mathbf{p}^{\top} \nabla f\left(x^{*}+t \mathbf{p}\right)
$$

for some $t \in(0, \bar{t})$. Therefore, $f\left(x^{*}+\bar{t} \mathbf{p}\right)<f\left(x^{*}\right)$ for all $\bar{t} \in(0, T]$. We have found a direction leading away from x^{*} along which f decreases, so x^{*} is not a local minimizer, and we have $\nabla^{2} f(\mathbf{x})=\mathbf{0}$.

For contradiction, assume that $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ is not positive semidefinite. Then we can choose a vector \mathbf{p} such that $\mathbf{p}^{\top} \nabla^{2} f\left(\mathbf{x}^{*}\right) \mathbf{p}<0$. Because $\nabla^{2} f(\mathbf{x})$ is continuous near \mathbf{x}^{*}, there is a scalar $T>0$ such that

$$
\mathbf{p}^{\top} \nabla^{2} f\left(\mathbf{x}^{*}+t \mathbf{p}\right) \mathbf{p}<0
$$

for all $t \in[0, T]$. By doing a Taylor series expansion around x^{*}, we have for all $\bar{t} \in(0, T]$ and some $t \in(0, \bar{t})$ that

$$
f\left(\mathbf{x}^{*}+\bar{t} \mathbf{p}\right)=f\left(\mathbf{x}^{*}\right)+\bar{t} \mathbf{p}^{\top} \nabla f\left(\mathbf{x}^{*}\right)+\frac{1}{2} \bar{t}^{2} \mathbf{p}^{\top} \nabla^{2}\left(\mathbf{x}^{*}+t \mathbf{p}\right) \bar{t}^{2} \mathbf{p}<f\left(\mathbf{x}^{*}\right)
$$

We have found a direction from \mathbf{x}^{*} along which f is decreasing, and so again, \mathbf{x}^{*} is not a local minimizer.
Theorem 1.6. Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$, the solution of minimization problem

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x}) \triangleq \frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}
$$

is $\hat{\mathbf{x}}=\mathbf{A}^{\dagger} \mathbf{b}+\left(\mathbf{I}-\mathbf{A}^{\dagger} \mathbf{A}\right) \mathbf{y}$, where $\mathbf{y} \in \mathbb{R}^{n}$
Proof. The Hessian of $f(\mathbf{x})$ is $\mathbf{A}^{\top} \mathbf{A} \succeq \mathbf{0}$, which means $f(\mathbf{x})$ is convex. Let $\mathbf{A}=\mathbf{U}_{r} \boldsymbol{\Sigma}_{r} \mathbf{V}_{r}^{\top}$ be the condense SVD, where r is the rank of \mathbf{A}. Since $\nabla f(\mathbf{x})=\mathbf{A}^{\top} \mathbf{A} \mathbf{x}-\mathbf{A}^{\top} \mathbf{b}$, we only needs to solve the linear system

$$
\mathbf{A}^{\top} \mathbf{A} \mathbf{x}-\mathbf{A}^{\top} \mathbf{b}=\mathbf{0} .
$$

We denote the solution of $\mathbf{A}^{\top} \mathbf{A x}-\mathbf{A}^{\top} \mathbf{b}=\mathbf{0}$ be

$$
\mathcal{X}=\left\{\mathbf{x}: \mathbf{A}^{\top} \mathbf{A} \mathbf{x}-\mathbf{A}^{\top} \mathbf{b}=\mathbf{0}\right\} .
$$

We can verify that $\hat{\mathbf{x}}=\mathbf{A}^{\dagger} \mathbf{b}+\left(\mathbf{I}-\mathbf{A}^{\dagger} \mathbf{A}\right) \mathbf{y}$ is the solution of the linear system because

$$
\begin{aligned}
& \mathbf{A}^{\top} \mathbf{A} \hat{\mathbf{x}}-\mathbf{A}^{\top} \mathbf{b} \\
= & \mathbf{A}^{\top} \mathbf{A}\left(\mathbf{A}^{\dagger} \mathbf{b}+\left(\mathbf{I}-\mathbf{A}^{\dagger} \mathbf{A}\right) \mathbf{y}\right)-\mathbf{A}^{\top} \mathbf{b} \\
= & \mathbf{A}^{\top}\left(\mathbf{A} \mathbf{A}^{\dagger}-\mathbf{I}\right) \mathbf{b}+\mathbf{A}^{\top} \mathbf{A}\left(\mathbf{I}-\mathbf{A}^{\dagger} \mathbf{A}\right) \mathbf{y} \\
= & \mathbf{V}_{r} \boldsymbol{\Sigma}_{r} \mathbf{U}_{r}^{\top}\left(\mathbf{U}_{r} \boldsymbol{\Sigma}_{r} \mathbf{V}_{r}^{\top} \mathbf{V}_{r} \boldsymbol{\Sigma}_{r}^{-1} \mathbf{U}_{r}^{\top}-\mathbf{I}\right) \mathbf{b}+\mathbf{V}_{r} \boldsymbol{\Sigma}_{r} \mathbf{U}_{r}^{\top} \mathbf{U}_{r} \boldsymbol{\Sigma}_{r} \mathbf{V}_{r}^{\top}\left(\mathbf{I}-\mathbf{V}_{r} \boldsymbol{\Sigma}_{r}^{-1} \mathbf{U}_{r}^{\top} \mathbf{U}_{r} \boldsymbol{\Sigma}_{r} \mathbf{V}_{r}^{\top}\right) \mathbf{y} \\
= & \mathbf{V}_{r} \boldsymbol{\Sigma}_{r} \mathbf{U}_{r}^{\top}\left(\mathbf{U}_{r} \mathbf{U}_{r}^{\top}-\mathbf{I}\right) \mathbf{b}+\mathbf{V}_{r} \boldsymbol{\Sigma}_{r}^{2} \mathbf{V}_{r}^{\top}\left(\mathbf{I}-\mathbf{V}_{r} \mathbf{V}_{r}^{\top}\right) \mathbf{y} \\
= & \mathbf{V}_{r} \boldsymbol{\Sigma}_{r}\left(\mathbf{U}_{r}^{\top}-\mathbf{U}_{r}^{\top}\right) \mathbf{b}+\mathbf{V}_{r} \boldsymbol{\Sigma}_{r}^{2}\left(\mathbf{V}_{r}^{\top}-\mathbf{V}_{r}^{\top}\right) \mathbf{y} \\
= & \mathbf{0}
\end{aligned}
$$

Hence, we have $\mathcal{X}_{1} \subseteq \mathcal{X}$, where $\mathcal{X}_{1}=\left\{\mathbf{x}: \mathbf{x}=\mathbf{A}^{\dagger} \mathbf{b}+\left(\mathbf{I}-\mathbf{A}^{\dagger} \mathbf{A}\right) \mathbf{y}, \quad \mathbf{y} \in \mathbb{R}^{n}\right\}$.
We also have

$$
\mathbf{A}^{\top} \mathbf{A} \mathbf{x}-\mathbf{A}^{\top} \mathbf{b}=\mathbf{0}
$$

$$
\begin{aligned}
& \Longleftrightarrow \mathbf{V}_{r} \boldsymbol{\Sigma}_{r}^{2} \mathbf{V}_{r}^{\top} \mathbf{x}-\mathbf{V}_{r} \boldsymbol{\Sigma}_{r} \mathbf{U}_{r}^{\top} \mathbf{b}=\mathbf{0} \\
& \Longleftrightarrow \boldsymbol{\Sigma}_{r}^{2} \mathbf{V}_{r}^{\top} \mathbf{x}-\boldsymbol{\Sigma}_{r} \mathbf{U}_{r}^{\top} \mathbf{b}=\mathbf{0} \\
& \Longleftrightarrow \mathbf{V}_{r}^{\top} \mathbf{x}=\boldsymbol{\Sigma}_{r}^{-1} \mathbf{U}_{r}^{\top} \mathbf{b} \\
& \Longleftrightarrow \mathbf{V}_{r} \mathbf{V}_{r}^{\top} \mathbf{x}=\mathbf{V}_{r} \boldsymbol{\Sigma}_{r}^{-1} \mathbf{U}_{r}^{\top} \mathbf{b} \\
& \Longleftrightarrow \mathbf{x}-\left(\mathbf{I}-\mathbf{V}_{r} \mathbf{V}_{r}^{\top}\right) \mathbf{x}=\mathbf{A}^{\dagger} \mathbf{b} \\
& \Longleftrightarrow \mathbf{x}=\mathbf{A}^{\dagger} \mathbf{b}+\left(\mathbf{I}-\mathbf{V}_{r} \mathbf{V}_{r}^{\top}\right) \mathbf{x}
\end{aligned}
$$

Hence, we have $\mathcal{X}=\left\{\mathbf{x}: \mathbf{x}=\mathbf{A}^{\dagger} \mathbf{b}+\left(\mathbf{I}-\mathbf{V}_{r} \mathbf{V}_{r}^{\top}\right) \mathbf{x}\right\} \subseteq \mathcal{X}_{1}$. In conclusion, we have $\mathcal{X}=\mathcal{X}_{1}$.

2 The Multivariate Normal Distributions

Statistical Independence If $F(x, y)=F(x) G(y)$, we have

$$
\begin{aligned}
f(x, y) & =\frac{\partial^{2} F(x, y)}{\partial x \partial y}=\frac{\partial^{2} F(x) G(y)}{\partial x \partial y} \\
& =\frac{\mathrm{d} F(x)}{\mathrm{d} x} \frac{\mathrm{~d} G(y)}{\mathrm{d} y} \\
& =f(x) g(y) .
\end{aligned}
$$

If $f(x, y)=f(x) g(y)$, we have

$$
\begin{aligned}
F(x, y) & =\int_{-\infty}^{y} \int_{-\infty}^{x} f(u, v) \mathrm{d} u \mathrm{~d} v=\int_{-\infty}^{y} \int_{-\infty}^{x} f(u) g(v) \mathrm{d} u \mathrm{~d} v \\
& =\int_{-\infty}^{y} \int_{-\infty}^{x} f(u, v) \mathrm{d} u \mathrm{~d} v=\int_{-\infty}^{x} f(u) \mathrm{d} u \int_{-\infty}^{y} g(v) \mathrm{d} v \\
& =F(x) G(y) .
\end{aligned}
$$

Uncorrelated does not means independent Let $X \sim U(-1,1)$ and

$$
Y= \begin{cases}X, & X>0 \\ -X, & X \leq 0\end{cases}
$$

Show X and Y are uncorrelated but they are NOT independent.
Conditional Distributions Let $y_{1}=y, y_{2}=y+\Delta$. Then for a continuous density, the mean value theorem implies

$$
\int_{y}^{y+\Delta y} g(v) \mathrm{d} v=g\left(y^{*}\right) \Delta y
$$

where $y \leq y^{*} \leq y+\Delta y$. We also have

$$
\int_{y}^{y+\Delta y} f(u, v) \mathrm{d} v=f\left(u, y^{*}(u)\right) \Delta y,
$$

where $y \leq y^{*}(u) \leq y+\Delta y$. Connecting above results to

$$
\operatorname{Pr}\left\{x_{1} \leq X \leq x_{2} \mid y_{1} \leq Y \leq y_{2}\right\}=\frac{\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} f(u, v) \mathrm{d} v \mathrm{~d} u}{\int_{y_{1}}^{y_{2}} g(v) \mathrm{d} v}
$$

with $y_{1}=y$ and $y_{2}=y+\Delta y$, we have

$$
\begin{align*}
& \operatorname{Pr}\left\{x_{1} \leq X \leq x_{2} \mid y \leq Y \leq y+\Delta y\right\} \\
= & \frac{\int_{x_{1}}^{x_{2}} \int_{y}^{y+\Delta y} f(u, v) \mathrm{d} v \mathrm{~d} u}{\int_{y}^{y+\Delta y} g(v) \mathrm{d} v} \\
= & \frac{\int_{x_{1}}^{x_{2}} f\left(u, y^{*}(u)\right) \Delta y \mathrm{~d} u}{g\left(y^{*}\right) \Delta y} \tag{1}\\
= & \int_{x_{1}}^{x_{2}} \frac{f\left(u, y^{*}(u)\right)}{g\left(y^{*}\right)} \mathrm{d} u .
\end{align*}
$$

For y such that $g(y)>0$, we define $\operatorname{Pr}\left\{x_{1} \leq X \leq x_{2} \mid Y=y\right\}$, the probability that X lies between x_{1} and x_{2}, given that Y is y, as the limit of (1) as $\Delta y \rightarrow 0$. Thus

$$
\begin{equation*}
\operatorname{Pr}\left\{x_{1} \leq X \leq x_{2} \mid Y=y\right\}=\int_{x_{1}}^{x_{2}} \frac{f(u, y)}{g(y)} \mathrm{d} u=\int_{x_{1}}^{x_{2}} f(u \mid y) \mathrm{d} u \tag{2}
\end{equation*}
$$

Transform of Variables Let the density of X_{1}, \ldots, X_{p} be $f\left(x_{1}, \ldots, x_{p}\right)$. Consider the p real-valued functions $\mathbf{u}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ such that

$$
y_{i}=u_{i}\left(x_{1}, \ldots, x_{p}\right), \quad i=1, \ldots, p
$$

Assume the transformation \mathbf{u} from the x-space to the y-space is one-to-one, then the inverse transformation is \mathbf{u}^{-1} such that

$$
x_{i}=u_{i}^{-1}\left(y_{1}, \ldots, y_{p}\right), \quad i=1, \ldots, p
$$

Let the random variables Y_{1}, \ldots, Y_{p} be defined by

$$
Y_{i}=u_{i}\left(X_{1}, \ldots, X_{p}\right), \quad i=1, \ldots, p
$$

and the density of Y_{1}, \ldots, Y_{p} be $g(\mathbf{y})$. Then we have

$$
\begin{equation*}
\int_{\mathbf{u}(\Omega)} g(\mathbf{y}) \mathrm{d} \mathbf{y}=\int_{\Omega} g(\mathbf{u}(\mathbf{x})) \operatorname{abs}(|\mathbf{J}(\mathbf{x})|) \mathrm{d} \mathbf{x} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
f(\mathbf{x})=g(\mathbf{u}(\mathbf{x})) \operatorname{abs}(|\mathbf{J}(\mathbf{x})|) \tag{4}
\end{equation*}
$$

where the Jacobin matrix is

$$
\mathbf{J}(\mathbf{x})=\left[\begin{array}{cccc}
\frac{\partial u_{1}}{\partial x_{1}} & \frac{\partial u_{1}}{\partial x_{2}} & \ldots & \frac{\partial u_{1}}{\partial x_{p}} \\
\frac{\partial u_{2}}{\partial x_{1}} & \frac{\partial u_{2}}{\partial x_{2}} & \cdots & \frac{\partial u_{2}}{\partial x_{p}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial u_{p}}{\partial x_{1}} & \frac{\partial u_{p}}{\partial x_{2}} & \cdots & \frac{\partial u_{p}}{\partial x_{p}}
\end{array}\right] .
$$

A roughly proof for above results:

- If $\mathbf{A} \in \mathbb{R}^{p \times p}$ and $\mathcal{S} \subset \mathbb{R}^{p}$ is a measurable set, then $m(\mathbf{A} \mathcal{S})=|\operatorname{det}(\mathbf{A})| m(\mathcal{S})$. Let $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$ where \mathbf{U} and \mathbf{V} are orthogonal and $\boldsymbol{\Sigma}$ is diagonal with nonnegative entries. Multiplying by \mathbf{V}^{\top} doesn't change the measure of \mathcal{S}. Multiplying by $\boldsymbol{\Sigma}$ scales along each axis, so the measure gets multiplied by $|\operatorname{det}(\boldsymbol{\Sigma})|=|\operatorname{det}(\mathbf{A})|$. Multiplying by \mathbf{U} doesn't change the measure.
- We consider the probability of \mathbf{x} in Ω and \mathbf{y} in $\mathbf{u}(\Omega)$; and partition Ω into $\left\{\Omega_{i}\right\}_{i}$. Then

$$
\begin{aligned}
& \int_{\mathbf{u}(\Omega)} g(\mathbf{y}) \mathrm{d} \mathbf{y} \\
= & \sum_{i} g\left(\mathbf{u}\left(\mathbf{x}_{i}\right)\right) m\left(\mathbf{u}\left(\Omega_{i}\right)\right) \\
\approx & \sum_{i} g\left(\mathbf{u}\left(\mathbf{x}_{i}\right)\right) m\left(\mathbf{u}\left(\mathbf{x}_{i}\right)+\mathbf{J}\left(\mathbf{x}_{i}\right)\left(\Omega_{i}-\mathbf{x}_{i}\right)\right) \\
= & \sum_{i} g\left(\mathbf{u}\left(\mathbf{x}_{i}\right)\right) m\left(\mathbf{J}\left(\mathbf{x}_{i}\right) \Omega_{i}\right) \\
= & \sum_{i} g\left(\mathbf{u}\left(\mathbf{x}_{i}\right)\right) \operatorname{abs}\left(\left|\mathbf{J}\left(\mathbf{x}_{i}\right)\right|\right) m\left(\Omega_{i}\right) \\
\approx & \int_{\Omega} g(\mathbf{u}(\mathbf{x})) \operatorname{abs}(|\mathbf{J}(\mathbf{x})|) \mathrm{d} \mathbf{x} .
\end{aligned}
$$

- Consider notation Ω such that

$$
\int_{\Omega}=\int_{x_{1}}^{x_{1}^{\prime}} \cdots \int_{x_{p}}^{x_{p}^{\prime}}
$$

where $x_{1} \leq x_{1}^{\prime}, x_{2} \leq x_{2}^{\prime}, \ldots, x_{p} \leq x_{p}^{\prime}$. Then the notation $\mathbf{u}(\Omega)$ in the integral should consider the order

$$
\int_{\mathbf{u}(\Omega)}=\int_{\min \left\{u_{1}\left(x_{1}\right), u_{1}\left(x_{1}^{\prime}\right)\right\}}^{\max \left\{u_{1}\left(x_{1}\right), u_{1}\left(x_{1}^{\prime}\right)\right\}} \cdots \int_{\min \left\{u_{p}\left(x_{p}\right), u_{p}\left(x_{p}^{\prime}\right)\right\}}^{\max \left\{u_{p}\left(x_{p}\right), u_{p}\left(x_{p}^{\prime}\right)\right\}}
$$

By using even tinier subsets Ω_{i}, the approximation would be even better so we see by a limiting argument that we actually obtain (3). On the other hand, we have (f is density functions of \mathbf{x} on $\Omega ; g$ is density function of \mathbf{y} on $\mathbf{u}(\Omega) ; \mathbf{y}=\mathbf{u}(\mathbf{x})$ means \mathbf{x} and $\mathbf{y}=\mathbf{u}(\mathbf{x})$ are one-to-one mapping).

$$
\int_{\Omega} f(\mathbf{x}) \mathrm{d} \mathbf{x}=\int_{\mathbf{u}(\Omega)} g(\mathbf{y}) \mathrm{d} \mathbf{y}=\int_{\Omega} g(\mathbf{u}(\mathbf{x})) \operatorname{abs}(|\mathbf{J}(\mathbf{x})|) \mathrm{d} \mathbf{x} .
$$

Since it holds for any Ω, then

$$
f(\mathbf{x})=g(\mathbf{u}(\mathbf{x})) \operatorname{abs}(|\mathbf{J}(\mathbf{x})|) .
$$

Lemma 2.1. If \mathbf{Z} is an $m \times n$ random matrix, \mathbf{D} is an $l \times m$ real matrix, \mathbf{E} is an $n \times q$ real matrix, and \mathbf{F} is an $l \times q$ real matrix, then

$$
\mathbb{E}[\mathbf{D Z E}+\mathbf{F}]=\mathbf{D} \mathbb{E}[\mathbf{Z}] \mathbf{E}+\mathbf{F} .
$$

Proof. The element in the i-th row and j-th column of $\mathbb{E}[\mathbf{D Z E}+\mathbf{F}]$ is

$$
\mathbb{E}\left[\sum_{h, g} d_{i h} z_{h g} e_{g j}+f_{i j}\right]=\sum_{h, g} d_{i h} \mathbb{E}\left[z_{h g}\right] e_{g j}+f_{i j}
$$

which is the element in the i-th row and j-th column of $\mathbf{D E}[\mathbf{Z}] \mathbf{E}+\mathbf{F}$.
Lemma 2.2. If $\mathbf{y}=\mathbf{D} \mathbf{x}+\mathbf{f} \in \mathbb{R}^{l}$, where \mathbf{D} is an $l \times m$ real matrix, $\mathbf{x} \in \mathbb{R}^{m}$ is a random vector, then

$$
\mathbb{E}[\mathbf{y}]=\mathbf{D} \mathbb{E}[\mathbf{x}]+\mathbf{f} \text { and } \operatorname{Cov}[\mathbf{y}]=\mathbf{D} \operatorname{Cov}[\mathbf{x}] \mathbf{D}^{\top} .
$$

Proof. We have

$$
\begin{aligned}
& \operatorname{Cov}(\mathbf{y}) \\
= & \mathbb{E}\left[(\mathbf{y}-\mathbb{E}[\mathbf{y}])(\mathbf{y}-\mathbb{E}[\mathbf{y}])^{\top}\right] \\
= & \mathbb{E}\left[(\mathbf{D x}+\mathbf{f}-\mathbb{E}[\mathbf{D E}[\mathbf{x}]+\mathbf{f}])(\mathbf{D} \mathbf{x}+\mathbf{f}-\mathbb{E}[\mathbf{D E}[\mathbf{x}]+\mathbf{f}])^{\top}\right] \\
= & \mathbb{E}\left[(\mathbf{D} \mathbf{x}-\mathbf{D} \mathbb{E}[\mathbf{x}])(\mathbf{D} \mathbf{x}-\mathbf{D E}[\mathbf{x}])^{\top}\right] \\
= & \mathbb{E}\left[\mathbf{D}(\mathbf{x}-\mathbb{E}[\mathbf{x}])(\mathbf{x}-\mathbb{E}[\mathbf{x}])^{\top} \mathbf{D}^{\top}\right] \\
= & \mathbf{D} \mathbb{E}\left[(\mathbf{x}-\mathbb{E}[\mathbf{x}])(\mathbf{x}-\mathbb{E}[\mathbf{x}])^{\top}\right] \mathbf{D}^{\top} \\
= & \mathbf{D} \operatorname{Cov}[\mathbf{x}] \mathbf{D}^{\top} .
\end{aligned}
$$

The Density Function of Multivariate Normal Distribution Let the spectral decomposition of A be $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}$, then we take $\mathbf{C}=\mathbf{U} \boldsymbol{\Lambda}^{-1 / 2}$ and it satisfies $\mathbf{C}^{\top} \mathbf{A C}=\mathbf{I}$ and \mathbf{C} is non-singular. Define $\mathbf{y}=\mathbf{C}^{-1}(\mathbf{x}-\mathbf{b})$, then

$$
\begin{aligned}
K^{-1} & =\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \exp \left(-\frac{1}{2}(\mathbf{x}-\mathbf{b})^{\top} \mathbf{A}(\mathbf{x}-\mathbf{b})\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{p} \\
& =\frac{1}{\operatorname{det}\left(\mathbf{C}^{-1}\right)} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \exp \left(-\frac{1}{2} \mathbf{y}^{\top} \mathbf{y}\right) \mathrm{d} y_{1} \ldots \mathrm{~d} y_{p} \\
& =\operatorname{det}(\mathbf{C}) \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \exp \left(-\frac{1}{2} \sum_{i=1}^{n} y_{i}^{2}\right) \mathrm{d} y_{1} \ldots \mathrm{~d} y_{p} \\
& =\operatorname{det}\left(\mathbf{A}^{-\frac{1}{2}}\right) \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \exp \left(-\frac{1}{2} y_{p}^{2}\right) \ldots \exp \left(-\frac{1}{2} y_{1}^{2}\right) \mathrm{d} y_{1} \ldots \mathrm{~d} y_{p} \\
& =\operatorname{det}\left(\mathbf{A}^{-\frac{1}{2}}\right)(2 \pi)^{\frac{p}{2}} .
\end{aligned}
$$

Directly consider the expectation and variance of \mathbf{x} is not easy, so we first consider the ones of \mathbf{y}. The relation $\mathbf{y}=\mathbf{C}^{-1}(\mathbf{x}-\mathbf{b})$ means $\mathbf{x}=\mathbf{C y}+\mathbf{b}$ and $\mathbb{E}[\mathbf{x}]=\mathbf{C E}[\mathbf{y}]+\mathbf{b}$. The transformation implies the density function of \mathbf{y} is

$$
\begin{aligned}
g(\mathbf{y}) & =\operatorname{det}(\mathbf{C}) K \exp \left(-\frac{1}{2}(\mathbf{C y}+\mathbf{b}-\mathbf{b})^{\top} \mathbf{A}(\mathbf{C} \mathbf{y}+\mathbf{b}-\mathbf{b})\right) \mathrm{d} y_{1} \ldots \mathrm{~d} y_{p} \\
& =\operatorname{det}(\mathbf{C}) K \exp \left(-\frac{1}{2} \mathbf{y}^{\top} \mathbf{C}^{\top} \mathbf{A C y}\right) \mathrm{d} y_{1} \ldots \mathrm{~d} y_{p} \\
& =K \operatorname{det}(\mathbf{C}) \exp \left(-\frac{1}{2} \mathbf{y}^{\top} \mathbf{y}\right) \mathrm{d} y_{1} \ldots \mathrm{~d} y_{p} \\
& =\frac{\operatorname{det}(\mathbf{C})}{\sqrt{(2 \pi)^{p} \operatorname{det}(\mathbf{A})}} \exp \left(-\frac{1}{2} \sum_{i=1}^{p} y_{i}^{2}\right) \mathrm{d} y_{1} \ldots \mathrm{~d} y_{p} \\
& =\frac{1}{(2 \pi)^{p / 2}} \exp \left(-\frac{1}{2} \sum_{i=1}^{p} y_{i}^{2}\right) \mathrm{d} y_{1} \ldots \mathrm{~d} y_{p} .
\end{aligned}
$$

Then for each $i=1, \ldots, p$, we have

$$
\begin{aligned}
\mathbb{E}\left[y_{i}\right] & =\frac{1}{(2 \pi)^{p / 2}} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} y_{i} \exp \left(-\frac{1}{2} \sum_{j=1}^{p} y_{j}^{2}\right) \mathrm{d} y_{1} \ldots \mathrm{~d} y_{p} \\
& =\left(\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} y_{i} \exp \left(-\frac{1}{2} y_{i}^{2}\right) \mathrm{d} y_{i}\right) \prod_{j=1, i \neq j}^{p} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \exp \left(-\frac{1}{2} y_{j}^{2}\right) \mathrm{d} y_{j}
\end{aligned}
$$

$$
=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} y_{i} \exp \left(-\frac{1}{2} y_{i}^{2}\right) \mathrm{d} y_{i}=0
$$

Thus $\mathbb{E}[\mathbf{y}]=\mathbf{0}$ and $\mathbb{E}[\mathbf{x}]=\mathbf{C} \mathbb{E}[\mathbf{y}]+\mathbf{b}=\boldsymbol{\mu}$ implies $\mathbf{b}=\boldsymbol{\mu}$.
The relation $\mathbf{x}=\mathbf{C y}+\mathbf{b}$ means $\operatorname{Cov}[\mathbf{x}]=\mathbf{C C o v}[\mathbf{y}] \mathbf{C}^{\top}=\mathbf{C E}\left[\mathbf{y} \mathbf{y}^{\top}\right] \mathbf{C}^{\top}$. For each $i \neq j$, we have
$\mathbb{E}\left[y_{i} y_{j}\right]$

$$
\begin{aligned}
& =\frac{1}{(2 \pi)^{p / 2}} \int_{-\infty}^{+\infty} \ldots \int_{-\infty}^{+\infty} y_{i} y_{j} \exp \left(-\frac{1}{2} \sum_{h=1}^{p} y_{h}^{2}\right) \mathrm{d} y_{1} \ldots \mathrm{~d} y_{p} \\
& =\left(\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} y_{i} \exp \left(-\frac{1}{2} y_{i}^{2}\right) \mathrm{d} y_{i}\right)\left(\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} y_{j} \exp \left(-\frac{1}{2} y_{j}^{2}\right) \mathrm{d} y_{j}\right) \prod_{j=1, h \neq i, j}^{p} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \exp \left(-\frac{1}{2} y_{h}^{2}\right) \mathrm{d} y_{h} \\
& =0
\end{aligned}
$$

We also have

$$
\begin{aligned}
& \mathbb{E}\left[y_{i}^{2}\right] \\
= & \frac{1}{(2 \pi)^{p / 2}} \int_{-\infty}^{+\infty} \ldots \int_{-\infty}^{+\infty} y_{i}^{2} \exp \left(-\frac{1}{2} \sum_{h=1}^{p} y_{h}^{2}\right) \mathrm{d} y_{1} \ldots \mathrm{~d} y_{p} \\
= & \left(\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} y_{i}^{2} \exp \left(-\frac{1}{2} y_{i}^{2}\right) \mathrm{d} y_{i}\right) \prod_{j=1, h \neq i}^{p} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \exp \left(-\frac{1}{2} y_{h}^{2}\right) \mathrm{d} y_{h}=1
\end{aligned}
$$

where the last step is due to

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \exp \left(-\frac{1}{2} y_{h}^{2}\right) \mathrm{d} y_{h}
$$

corresponds to the pdf of $y_{h} \sim \mathcal{N}(0,1)$ and

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} y_{i}^{2} \exp \left(-\frac{1}{2} y_{i}^{2}\right) \mathrm{d} y_{i}
$$

corresponds to the variance of $y_{i} \sim \mathcal{N}(0,1)$. Hence, it holds that

$$
\mathbb{E}\left[\left(y_{i}-\mathbb{E}\left[y_{i}\right]\right)\left(y_{j}-\mathbb{E}\left[y_{j}\right]\right)\right]= \begin{cases}0, & i \neq j \\ 1, & i=j\end{cases}
$$

which implies $\boldsymbol{\Sigma}=\operatorname{Cov}[\mathbf{x}]=\mathbf{C E}\left[\mathbf{y} \mathbf{y}^{\top}\right] \mathbf{C}^{\top}=\mathbf{C} \mathbf{C}^{\top}$. Since $\mathbf{C}^{\top} \mathbf{A C}=\mathbf{I}$, we obtain $\mathbf{A}^{-1}=\mathbf{C C}^{\top}$ and $\boldsymbol{\Sigma}=\mathbf{A}^{-1} \succ \mathbf{0}$.

Theorem 2.1. Let $\mathbf{x} \sim \mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with $\boldsymbol{\Sigma} \in \mathbb{R}^{p \times p}$ and $\boldsymbol{\Sigma} \succ \mathbf{0}$. Then

$$
\mathbf{y}=\mathbf{C x}
$$

is distributed according to $\mathcal{N}_{p}\left(\mathbf{C} \boldsymbol{\mu}, \mathbf{C} \boldsymbol{\Sigma} \mathbf{C}^{\top}\right)$ for non-singular $\mathbf{C} \in \mathbb{R}^{p \times p}$.
Proof. Let $f(x)$ be the density of \mathbf{x} such that

$$
f(\mathbf{x})=n(\mu \mid \boldsymbol{\Sigma})=\frac{1}{\sqrt{(2 \pi)^{p} \operatorname{det}(\boldsymbol{\Sigma})}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

and $g(\mathbf{y})$ be the density function of \mathbf{y}. The relation $\mathbf{x}=\mathbf{C}^{-1} \mathbf{y}$ implies $g(\mathbf{y})=f\left(\mathbf{u}^{-1}(\mathbf{y})\right)\left|\operatorname{det}\left(\mathbf{J}^{-1}(\mathbf{y})\right)\right|$ with $\mathbf{u}(\mathbf{x})=\mathbf{C x}, \mathbf{u}^{-1}(\mathbf{y})=\mathbf{C}^{-1} \mathbf{y}$ and $\mathbf{J}^{-1}(\mathbf{y})=\mathbf{C}^{-1}$. Hence, we have

$$
g(\mathbf{y})
$$

$$
\begin{aligned}
& =f\left(\mathbf{C}^{-1} \mathbf{y}\right)\left|\operatorname{det}\left(\mathbf{C}^{-1}\right)\right| \\
& =\frac{1}{\sqrt{(2 \pi)^{p} \operatorname{det}(\boldsymbol{\Sigma})}} \exp \left(-\frac{1}{2}\left(\mathbf{C}^{-1} \mathbf{y}-\boldsymbol{\mu}\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(\mathbf{C}^{-1} \mathbf{y}-\boldsymbol{\mu}\right)\right)\left|\operatorname{det}\left(\mathbf{C}^{-1}\right)\right| \\
& =\frac{\left|\operatorname{det}\left(\mathbf{C}^{-1}\right)\right|}{\sqrt{(2 \pi)^{p} \operatorname{det}(\boldsymbol{\Sigma})}} \exp \left(-\frac{1}{2}(\mathbf{y}-\mathbf{C} \boldsymbol{\mu})^{\top} \mathbf{C}^{-\top} \boldsymbol{\Sigma}^{-1} \mathbf{C}^{-1}(\mathbf{y}-\mathbf{C} \boldsymbol{\mu})\right) \\
& =\frac{1}{\sqrt{(2 \pi)^{p} \operatorname{det}\left(\mathbf{C} \boldsymbol{\Sigma}^{-1} \mathbf{C}^{\top}\right)}} \exp \left(-\frac{1}{2}(\mathbf{y}-\mathbf{C} \boldsymbol{\mu})^{\top}\left(\mathbf{C} \boldsymbol{\Sigma}^{-1} \mathbf{C}^{\top}\right)^{-1}(\mathbf{y}-\mathbf{C} \boldsymbol{\mu})\right) \\
& =n\left(\mathbf{C} \mu \mid \mathbf{C} \boldsymbol{\Sigma}^{-1} \mathbf{C}^{\top}\right),
\end{aligned}
$$

where we use the fact

$$
\frac{\left|\operatorname{det}\left(\mathbf{C}^{-1}\right)\right|}{\sqrt{\operatorname{det}(\boldsymbol{\Sigma})}}=\frac{1}{\sqrt{|\operatorname{det}(\mathbf{C})|^{2} \operatorname{det}(\boldsymbol{\Sigma})}}=\frac{1}{\sqrt{|\operatorname{det}(\mathbf{C})| \operatorname{det}(\boldsymbol{\Sigma})\left|\operatorname{det}\left(\mathbf{C}^{\top}\right)\right|}}=\frac{1}{\sqrt{\left|\operatorname{det}\left(\mathbf{C} \boldsymbol{\Sigma} \mathbf{C}^{\top}\right)\right|}}
$$

Theorem 2.2. If $\mathbf{x}=\left[x_{1}, \ldots, x_{p}\right]^{\top}$ have a joint normal distribution. Let

1. $\mathbf{x}^{(1)}=\left[x_{1}, \ldots, x_{q}\right]^{\top}$,
2. $\mathbf{x}^{(2)}=\left[x_{q+1}, \ldots, x_{p}\right]^{\top}$.
for $q<p$. A necessary and sufficient condition for $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ to be independent is that each covariance of a variable from $\mathbf{x}^{(1)}$ and a variable from $\mathbf{x}^{(2)}$ is 0 .

Proof. Let

$$
\mathbf{x}=\left[\begin{array}{l}
\mathbf{x}^{(1)} \\
\mathbf{x}^{(2)}
\end{array}\right] \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \quad \text { where } \boldsymbol{\mu}=\left[\begin{array}{l}
\boldsymbol{\mu}^{(1)} \\
\boldsymbol{\mu}^{(2)}
\end{array}\right] \quad \text { and } \boldsymbol{\Sigma}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right]
$$

such that

- $\boldsymbol{\mu}^{(1)}=\mathbb{E}\left[\mathbf{x}^{(1)}\right]$,
- $\boldsymbol{\mu}^{(2)}=\mathbb{E}\left[\mathbf{x}^{(2)}\right]$,
- $\boldsymbol{\Sigma}_{11}=\mathbb{E}\left[\left(\mathbf{x}^{(1)}-\boldsymbol{\mu}^{(1)}\right)\left(\mathbf{x}^{(1)}-\boldsymbol{\mu}^{(1)}\right)^{\top}\right]$,
- $\boldsymbol{\Sigma}_{22}=\mathbb{E}\left[\left(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}\right)\left(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}\right)^{\top}\right]$,
- $\boldsymbol{\Sigma}_{12}=\boldsymbol{\Sigma}_{21}^{\top}=\mathbb{E}\left[\left(\mathbf{x}^{(1)}-\boldsymbol{\mu}^{(1)}\right)\left(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}\right)^{\top}\right]$.

Sufficiency (uncorrelated \Longrightarrow independent): The random vectors $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ are uncorrelated means

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{11} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\Sigma}_{22}
\end{array}\right] \quad \text { and } \quad \boldsymbol{\Sigma}^{-1}=\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{11}^{-1} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\Sigma}_{22}^{-1}
\end{array}\right]
$$

The quadratic form of $n(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$ is

$$
\begin{aligned}
& (\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}) \\
= & {\left[\left(\mathbf{x}^{(1)}-\boldsymbol{\mu}^{(1)}\right)^{\top} \quad\left(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}\right)^{\top}\right]\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{11}^{-1} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\Sigma}_{22}^{-1}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}^{(1)}-\boldsymbol{\mu}^{(1)} \\
\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}
\end{array}\right] } \\
= & \left(\mathbf{x}^{(1)}-\boldsymbol{\mu}^{(1)}\right)^{\top} \boldsymbol{\Sigma}_{11}^{-1}\left(\mathbf{x}^{(1)}-\boldsymbol{\mu}^{(1)}\right)+\left(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}\right)^{\top} \boldsymbol{\Sigma}_{22}^{-1}\left(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}\right)
\end{aligned}
$$

and we have $\operatorname{det}(\boldsymbol{\Sigma})=\operatorname{det}\left(\boldsymbol{\Sigma}_{11}\right) \operatorname{det}\left(\boldsymbol{\Sigma}_{22}\right)$. Then

$$
\begin{aligned}
& n(\boldsymbol{\mu} \mid \boldsymbol{\Sigma}) \\
= & \frac{1}{\sqrt{(2 \pi)^{p} \operatorname{det}(\boldsymbol{\Sigma})}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right) \\
= & \frac{1}{\sqrt{(2 \pi)^{q} \operatorname{det}\left(\boldsymbol{\Sigma}_{11}\right)}} \exp \left(-\frac{1}{2}\left(\mathbf{x}^{(1)}-\boldsymbol{\mu}^{(1)}\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}^{(1)}-\boldsymbol{\mu}^{(1)}\right)\right) \\
& \cdot \frac{1}{\sqrt{(2 \pi)^{p-q} \operatorname{det}\left(\boldsymbol{\Sigma}_{22}\right)}} \exp \left(-\frac{1}{2}\left(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}\right)^{\top} \boldsymbol{\Sigma}_{22}^{-1}\left(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}\right)\right) \\
= & n\left(\boldsymbol{\mu}^{(1)} \mid \boldsymbol{\Sigma}^{(1)}\right) n\left(\boldsymbol{\mu}^{(2)} \mid \boldsymbol{\Sigma}^{(2)}\right) .
\end{aligned}
$$

Thus the marginal distribution of $\mathbf{x}^{(1)}$ is $\mathcal{N}\left(\boldsymbol{\mu}^{(1)}, \boldsymbol{\Sigma}_{11}\right)$ and the marginal distribution of $\mathbf{x}^{(2)}$ is $\mathcal{N}\left(\boldsymbol{\mu}^{(2)}, \boldsymbol{\Sigma}_{22}\right)$. We have prove two variables are independent.

Necessity (independent \Longrightarrow uncorrelated): Let $1 \leq i \leq q$ and $q+1 \leq j \leq p$. The Independence means

$$
\begin{aligned}
\sigma_{i j} & =\mathbb{E}\left[\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)\right] \\
& =\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty}\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right) f\left(x_{1}, \ldots, x_{p}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{p} \\
& =\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty}\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right) f\left(x_{1}, \ldots, x_{q}\right) f\left(x_{q+1}, \ldots, x_{p}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{p} \\
& =\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty}\left(x_{i}-\mu_{i}\right) f\left(x_{1}, \ldots, x_{q}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{q} \cdot \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty}\left(x_{j}-\mu_{j}\right) f\left(x_{q+1}, \ldots, x_{p}\right) \mathrm{d} x_{q+1} \ldots \mathrm{~d} x_{p} \\
& =0
\end{aligned}
$$

Theorem 2.3. If $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\Sigma} \succ \mathbf{0}$, the marginal distribution of any set of components of \mathbf{x} is multivariate normal with means, variances, and covariances obtained by taking the corresponding components of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$, respectively.

Proof. We shall make a non-singular linear transformation B to subvectors

$$
\begin{aligned}
& \mathbf{y}^{(1)}=\mathbf{x}^{(1)}+\mathbf{B} \mathbf{x}^{(2)} \\
& \mathbf{y}^{(2)}=\mathbf{x}^{(2)}
\end{aligned}
$$

leading to the components of $\mathbf{y}^{(1)}$ are uncorrelated with the ones of $\mathbf{y}^{(2)}$. The matrix \mathbf{B} should satisfy

$$
\begin{aligned}
\mathbf{0} & =\mathbb{E}\left[\left(\mathbf{y}^{(1)}-\mathbb{E}\left[\mathbf{y}^{(1)}\right]\right)\left(\mathbf{y}^{(2)}-\mathbb{E}\left[\mathbf{y}^{(2)}\right]\right)^{\top}\right] \\
& =\mathbb{E}\left[\left(\mathbf{x}^{(1)}+\mathbf{B} \mathbf{x}^{(2)}-\mathbb{E}\left[\mathbf{x}^{(1)}+\mathbf{B} \mathbf{x}^{(2)}\right]\right)\left(\mathbf{x}^{(2)}-\mathbb{E}\left[\mathbf{x}^{(2)}\right]\right)^{\top}\right] \\
& =\mathbb{E}\left[\left(\mathbf{x}^{(1)}-\mathbb{E}\left[\mathbf{x}^{(1)}\right]+\mathbf{B}\left(\mathbf{x}^{(2)}-\mathbb{E}\left[\mathbf{x}^{(2)}\right]\right)\right)\left(\mathbf{x}^{(2)}-\mathbb{E}\left[\mathbf{x}^{(2)}\right]\right)^{\top}\right] \\
& \left.=\mathbb{E}\left[\left(\mathbf{x}^{(1)}-\mathbb{E}\left[\mathbf{x}^{(1)}\right]\right)\left(\mathbf{x}^{(2)}-\mathbb{E}\left[\mathbf{x}^{(2)}\right]\right)^{\top}\right]+\mathbf{B} \cdot \mathbb{E}\left[\left(\mathbf{x}^{(2)}-\mathbb{E}\left[\mathbf{x}^{(2)}\right]\right)\right)\left(\mathbf{x}^{(2)}-\mathbb{E}\left[\mathbf{x}^{(2)}\right]\right)^{\top}\right] \\
& =\boldsymbol{\Sigma}_{12}+\mathbf{B} \boldsymbol{\Sigma}_{22} .
\end{aligned}
$$

Thus $\mathbf{B}=-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}$ and $\mathbf{y}^{(1)}=\mathbf{x}^{(1)}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \mathbf{x}^{(2)}$. The vector

$$
\mathbf{y}=\left[\begin{array}{l}
\mathbf{y}^{(1)} \\
\mathbf{y}^{(2)}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I} & -\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \\
\mathbf{0} & \mathbf{I}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}^{(1)} \\
\mathbf{x}^{(2)}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I} & -\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \\
\mathbf{0} & \mathbf{I}
\end{array}\right] \mathbf{x}
$$

is a non-singular transform of \mathbf{x}, and therefore has a normal distribution with

$$
\mathbb{E}\left[\begin{array}{l}
\mathbf{y}^{(1)} \\
\mathbf{y}^{(2)}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I} & -\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \\
\mathbf{0} & \mathbf{I}
\end{array}\right] \mathbb{E}[\mathbf{x}]=\left[\begin{array}{cc}
\mathbf{I} & -\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \\
\mathbf{0} & \mathbf{I}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{\mu}^{(1)} \\
\boldsymbol{\mu}^{(2)}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{\mu}^{(1)}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\mu}^{(2)} \\
\boldsymbol{\mu}^{(2)}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{\nu}^{(1)} \\
\boldsymbol{\nu}^{(2)}
\end{array}\right]
$$

Since the transform is non-singular, we have

$$
\begin{aligned}
\operatorname{Cov}\left[\begin{array}{l}
\mathbf{y}^{(1)} \\
\mathbf{y}^{(2)}
\end{array}\right] & =\left[\begin{array}{cc}
\mathbf{I} & -\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \\
\mathbf{0} & \mathbf{I}
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
-\boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} & \mathbf{I}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} & \mathbf{0} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
-\boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} & \mathbf{I}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\Sigma}_{22}
\end{array}\right]
\end{aligned}
$$

Thus $\mathbf{y}^{(1)}$ and $\mathbf{y}^{(2)}$ are independent, which implies the marginal distribution of $\mathbf{x}^{(2)}$ is $\mathcal{N}\left(\boldsymbol{\mu}^{(2)}, \boldsymbol{\Sigma}_{22}\right)$. Because the numbering of the components of \mathbf{x} is arbitrary, we have proved this theorem.

Singular Normal Distribution The mass is concentrated on a linear set \mathcal{S}. For any $x \notin \mathcal{S}$, there exists $\mathcal{B}(x, r)$ such that $r>0$ and $\mathcal{B} \cap \mathcal{S}=\emptyset$. If the distribution of x has density function f, then $f(x)=0$ holds for any $x \notin \mathcal{S}$. Since the measure of \mathcal{S} is zero, we have $f(x)=0$ almost everywhere, which means the integration of $f(x)$ on the whole space is 0 .

Conditional Distribution by Schur Complement Recall that

$$
\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I} & \mathbf{B D}^{-1} \\
\mathbf{0} & \mathbf{I}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C} & \mathbf{0} \\
\mathbf{0} & \mathbf{D}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
\mathbf{D}^{-1} \mathbf{C} & \mathbf{I}
\end{array}\right]
$$

which directly means the inverse of covariance of Normal distribution.
Theorem 2.4. Let $\mathbf{x} \sim \mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then

$$
\mathbf{z}=\mathbf{D} \mathbf{x}
$$

is distributed according to $\mathcal{N}_{q}\left(\mathbf{D} \boldsymbol{\mu}, \mathbf{D} \boldsymbol{\Sigma} \mathbf{D}^{\top}\right)$ for any $\mathbf{D} \in \mathbb{R}^{q \times p}$.
Proof. It is easy to verify $\mathbb{E}[\mathbf{z}]=\mathbf{D} \boldsymbol{\mu}$ and $\operatorname{Cov}[\mathbf{z}]=\mathbf{D} \boldsymbol{\Sigma} \mathbf{D}^{\top}$. Hence, we only need to show \mathbf{z} follows normal distribution.

Since $\mathbf{x} \sim \mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, it can be presented as

$$
\mathbf{x}=\mathbf{A} \mathbf{y}+\boldsymbol{\lambda}
$$

where $\mathbf{A} \in \mathbb{R}^{p \times r}, r$ is the rank of $\boldsymbol{\Sigma}$ and $\mathbf{y} \sim \mathcal{N}_{r}(\boldsymbol{\nu}, \mathbf{T})$ with non-singular $\mathbf{T} \succ \mathbf{0}$. We can write

$$
\mathbf{z}=\mathbf{D} \mathbf{A} \mathbf{y}+\mathbf{D} \boldsymbol{\lambda},
$$

where $\mathbf{D A} \in \mathbb{R}^{q \times r}$. If the rank of $\mathbf{D A}$ is r, the formal definition of a normal distribution that includes the singular distribution implies \mathbf{z} follows normal distribution.

If the rank of DA is less than r, say s, then

$$
\mathbf{E}=\operatorname{Cov}[\mathbf{z}]=\mathbf{D} \mathbf{A C o v}[\mathbf{y}] \mathbf{A}^{\top} \mathbf{D}^{\top}=\mathbf{D} \mathbf{A T} \mathbf{A}^{\top} \mathbf{D}^{\top} \in \mathbb{R}^{q \times q}
$$

is rank of s. There is a non-singular matrix

$$
\mathbf{F}=\left[\begin{array}{l}
\mathbf{F}_{1} \\
\mathbf{F}_{2}
\end{array}\right] \in \mathbb{R}^{q \times q}
$$

with $\mathbf{F}_{1} \in \mathbb{R}^{s \times q}$ and $\mathbf{F}_{2} \in \mathbb{R}^{(q-s) \times r}$ such that

$$
\mathbf{F E F}^{\top}=\left[\begin{array}{ll}
\mathbf{F}_{1} \mathbf{E F}_{1}^{\top} & \mathbf{F}_{1} \mathbf{E F}_{2}^{\top} \\
\mathbf{F}_{2} \mathbf{E F}_{1}^{\top} & \mathbf{F}_{2} \mathbf{E} \mathbf{F}_{2}^{\top}
\end{array}\right]\left[\begin{array}{ll}
\left(\mathbf{F}_{1} \mathbf{D A}\right) \mathbf{T}\left(\mathbf{F}_{1} \mathbf{D A}\right)^{\top} & \left(\mathbf{F}_{1} \mathbf{D A}\right) \mathbf{T}\left(\mathbf{F}_{2} \mathbf{D A}\right)^{\top} \\
\left(\mathbf{F}_{2} \mathbf{D A}\right) \mathbf{T}\left(\mathbf{F}_{1} \mathbf{D A}\right)^{\top} & \left(\mathbf{F}_{2} \mathbf{D A}\right) \mathbf{T}\left(\mathbf{F}_{2} \mathbf{D A}\right)^{\top}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I}_{s} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right] .
$$

Thus $\left(\mathbf{F}_{1} \mathbf{D A}\right) \mathbf{T}\left(\mathbf{F}_{1} \mathbf{D A}\right)^{\top}=\mathbf{I}_{s}$ means $\mathbf{F}_{1} \mathbf{D A}$ is of rank s and the non-singularity of \mathbf{T} means $\mathbf{F}_{2} \mathbf{D A}=\mathbf{0}$. Hence, we have

$$
\mathbf{F z}^{\prime}=\mathbf{F}(\mathbf{D A} \mathbf{y}+\mathbf{D} \boldsymbol{\lambda})=\left[\begin{array}{l}
\mathbf{F}_{1} \\
\mathbf{F}_{2}
\end{array}\right] \mathbf{D A} \mathbf{y}+\mathbf{F D} \boldsymbol{\lambda}=\left[\begin{array}{c}
\mathbf{F}_{1} \mathbf{D A y} \\
\mathbf{F}_{2} \mathbf{D A y}
\end{array}\right]+\mathbf{F D} \boldsymbol{\lambda}=\left[\begin{array}{c}
\mathbf{F}_{1} \mathbf{D A y} \\
\mathbf{0}
\end{array}\right]+\mathbf{F D} \boldsymbol{\lambda}
$$

Let $\mathbf{u}_{1}=\mathbf{F}_{1} \mathbf{D A y} \in \mathbb{R}^{s}$. Since $\mathbf{F}_{1} \mathbf{D A} \in \mathbb{R}^{s \times r}$ is of rank $s \leq r$, we conclude \mathbf{u}_{1} has a non-singular normal distribution. Let $\mathbf{F}^{-1}=\left[\mathbf{G}_{1}, \mathbf{G}_{2}\right]$, where $\mathbf{G}_{1} \in \mathbb{R}^{q \times s}$ and $\mathbf{G}_{2} \in \mathbb{R}^{q \times(q-s)}$. Then

$$
\mathbf{z}=\mathbf{F}^{-1}\left(\left[\begin{array}{c}
\mathbf{u}_{1} \\
\mathbf{0}
\end{array}\right]+\mathbf{F D} \boldsymbol{\lambda}\right)=\left[\mathbf{G}_{1}, \mathbf{G}_{2}\right]\left[\begin{array}{c}
\mathbf{u}_{1} \\
\mathbf{0}
\end{array}\right]+\mathbf{D} \boldsymbol{\lambda}=\mathbf{G}_{1} \mathbf{u}_{1}+\mathbf{D} \boldsymbol{\lambda}
$$

which is of the form of the formal definition of normal distribution.
Theorem 2.5. For $\mathbf{x} \sim \mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and every vector $\boldsymbol{\alpha} \in \mathbb{R}^{(p-q)}$, we have

$$
\operatorname{Var}\left[x_{i}^{(11.2)}\right] \leq \operatorname{Var}\left[x_{i}-\boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)}\right]
$$

for $i=1, \ldots, q$, where $x_{i}^{(11.2)}$ and x_{i} are the i-th entry of $\mathbf{x}^{(11.2)}$ and the i-th entry of \mathbf{x} respectively.
Proof. We denote

$$
\mathbf{B}=\left[\begin{array}{c}
\boldsymbol{\beta}_{(1)}^{\top} \\
\vdots \\
\boldsymbol{\beta}_{(q)}^{\top}
\end{array}\right]
$$

Since $\mathbf{x}^{(11.2)}$ is uncorrelated with $\mathbf{x}^{(2)}$ and

$$
\mathbb{E}\left[\mathbf{x}^{(11.2)}\right]=\mathbb{E}\left[\mathbf{x}^{(1)}-\left(\boldsymbol{\mu}^{(1)}+\mathbf{B}\left(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}\right)\right)\right]=\mathbb{E}\left[\mathbf{x}^{(1)}\right]-\boldsymbol{\mu}^{(1)}+\mathbf{B}\left(\mathbb{E}\left[\mathbf{x}^{(2)}\right]-\boldsymbol{\mu}^{(2)}\right)=\mathbf{0},
$$

we have

$$
\begin{aligned}
& \operatorname{Var}\left[x_{i}-\boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)}\right] \\
= & \mathbb{E}\left[x_{i}-\boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)}-\mathbb{E}\left[x_{i}-\boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)}\right]\right]^{2} \\
= & \mathbb{E}\left[x_{i}-\mu_{i}-\boldsymbol{\alpha}^{\top}\left(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}\right)\right]^{2} \\
= & \mathbb{E}\left[x_{i}^{(11.2)}+\boldsymbol{\beta}_{(i)}^{\top}\left(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}\right)-\boldsymbol{\alpha}^{\top}\left(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}\right)\right]^{2} \\
= & \mathbb{E}\left[x_{i}^{(11.2)}-\mathbb{E}\left[x_{i}^{(11.2)}\right]+\left(\boldsymbol{\beta}_{(i)}-\boldsymbol{\alpha}\right)^{\top}\left(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}\right)\right]^{2} \\
= & \operatorname{Var}\left[x_{i}^{(11.2)}\right]+\mathbb{E}\left[\left(x_{i}^{(11.2)}-\mathbb{E}\left[x_{i}^{(11.2)}\right]\right)\left(\boldsymbol{\beta}_{(i)}-\boldsymbol{\alpha}\right)^{\top}\left(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}\right)\right]+\mathbb{E}\left[\left(\boldsymbol{\beta}_{(i)}-\boldsymbol{\alpha}\right)^{\top}\left(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}\right)\right]^{2} \\
= & \operatorname{Var}\left[x_{i}^{(11.2)}\right]+\left(\boldsymbol{\beta}_{(i)}-\boldsymbol{\alpha}\right)^{\top} \mathbb{E}\left[\left(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}\right)\left(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}\right)^{\top}\right]\left(\boldsymbol{\beta}_{(i)}-\boldsymbol{\alpha}\right) \\
= & \operatorname{Var}\left[x_{i}^{(11.2)}\right]+\left(\boldsymbol{\beta}_{(i)}-\boldsymbol{\alpha}\right)^{\top} \operatorname{Cov}\left(\mathbf{x}^{(2)}\right)\left(\boldsymbol{\beta}_{(i)}-\boldsymbol{\alpha}\right) \\
\geq & \operatorname{Var}\left[x_{i}^{(11.2)}\right],
\end{aligned}
$$

where the quadratic form attains its minimum of 0 at $\boldsymbol{\beta}_{(i)}=\boldsymbol{\alpha}$.
Remark 2.1. Observe that

$$
\mathbb{E}\left[x_{i}\right]=\mu_{i}+\boldsymbol{\alpha}^{\top}\left(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}\right)
$$

Hence, the second equality in the proof means $\mu_{i}+\boldsymbol{\beta}_{(i)}^{\top}\left(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}\right)$ is the best linear predictor of x_{i} in the sense that of all functions of $\mathbf{x}^{(2)}$ of the form $\boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)}+c$, the mean squared error of the above is a minimum.

Theorem 2.6. Under the setting of Theorem 2.5, we have

$$
\operatorname{Corr}\left(x_{i}, \boldsymbol{\beta}_{(i)}^{\top} \mathbf{x}^{(2)}\right) \geq \operatorname{Corr}\left(x_{i}, \boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)}\right)
$$

Proof. Since the correlation between two variables is unchanged when either or both is multiplied by a positive constant, we can assume that

$$
\mathbb{E}\left[\boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)}\right]^{2}=\mathbb{E}\left[\boldsymbol{\beta}_{(i)}^{\top} \mathbf{x}^{(2)}\right]^{2}
$$

Using Theorem 2.5, we have

$$
\begin{aligned}
& \operatorname{Var}\left[x_{i}^{(11.2)}\right] \leq \operatorname{Var}\left[x_{i}-\boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)}\right] \\
\Longleftrightarrow & \left.\mathbb{E}\left[x_{i}-\mu_{i}-\boldsymbol{\beta}_{(i)}^{\top}\left(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}\right)\right)\right]^{2} \leq \mathbb{E}\left[x_{i}-\mu_{i}-\boldsymbol{\alpha}^{\top}\left(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}\right)\right]^{2} \\
\Longleftrightarrow & \operatorname{Var}\left[x_{i}\right]-\mathbb{E}\left[\left(x_{i}-\mu_{i}\right) \boldsymbol{\beta}_{(i)}^{\top}\left(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}\right)\right]+\operatorname{Var}\left[\boldsymbol{\beta}_{(i)}^{\top} \mathbf{x}^{(2)}\right] \\
& \leq \operatorname{Var}\left[x_{i}\right]-\mathbb{E}\left[\left(x_{i}-\mu_{i}\right) \boldsymbol{\alpha}^{\top}\left(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}\right)\right]+\operatorname{Var}\left[\boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)}\right] \\
\Longleftrightarrow & \frac{\mathbb{E}\left[\left(x_{i}-\mu_{i}\right) \boldsymbol{\alpha}^{\top}\left(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}\right)\right]}{\left.\sqrt{\operatorname{Var}\left[x_{i}\right]} \sqrt{\operatorname{Var}\left[\boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)}\right)}\right)} \leq \frac{\mathbb{E}\left[\left(x_{i}-\mu_{i}\right) \boldsymbol{\beta}_{(i)}^{\top}\left(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}\right)\right]}{\left.\sqrt{\operatorname{Var}\left[x_{i}\right]} \sqrt{\operatorname{Var}\left[\boldsymbol{\beta}^{\top} \mathbf{x}^{(2)}\right)}\right]} \\
\Longleftrightarrow & \frac{\operatorname{Cov}\left[x_{i}, \boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)}\right]}{\left.\sqrt{\operatorname{Var}\left[x_{i}\right]} \sqrt{\operatorname{Var}\left[\boldsymbol{\alpha}^{\top} \mathbf{x}^{(2)}\right)}\right]} \leq \frac{\mathbb{E}\left[x_{i}, \boldsymbol{\beta}_{(i)}^{\top} \mathbf{x}^{(2)}\right]}{\left.\sqrt{\operatorname{Var}\left[x_{i}\right]} \sqrt{\operatorname{Var}\left[\boldsymbol{\beta}^{\top} \mathbf{x}^{(2)}\right)}\right]}
\end{aligned}
$$

Theorem 2.7. Let $\mathbf{x}=\left[\begin{array}{l}\mathbf{x}^{(1)} \\ \mathbf{x}^{(2)}\end{array}\right]$. If $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ are independent and $g(\mathbf{x})=g^{(1)}\left(\mathbf{x}^{(1)}\right) g^{(2)}\left(\mathbf{x}^{(2)}\right)$, its characteristic function is

$$
\mathbb{E}[g(\mathbf{x})]=\mathbb{E}\left[g^{(1)}\left(\mathbf{x}^{(1)}\right)\right] \mathbb{E}\left[g^{(2)}\left(\mathbf{x}^{(2)}\right)\right]
$$

Proof. Let $f(\mathbf{x})=f^{(1)}\left(\mathbf{x}^{(1)}\right) f^{(2)}\left(\mathbf{x}^{(2)}\right)$ be the density of \mathbf{x}. If $g(x)$ is real-valued, we have

$$
\begin{aligned}
& \mathbb{E}[g(\mathbf{x})] \\
= & \int_{-\infty}^{+\infty} \ldots \int_{-\infty}^{+\infty} g(\mathbf{x}) f(\mathbf{x}) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{p} \\
= & \int_{-\infty}^{+\infty} \ldots \int_{-\infty}^{+\infty} g^{(1)}\left(\mathbf{x}^{(1)}\right) g^{(2)}\left(\mathbf{x}^{(2)}\right) f^{(1)}\left(\mathbf{x}^{(1)}\right) f^{(2)}\left(\mathbf{x}^{(2)}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{p} \\
= & \int_{-\infty}^{+\infty} \ldots \int_{-\infty}^{+\infty} g^{(1)}\left(\mathbf{x}^{(1)}\right) f^{(1)}\left(\mathbf{x}^{(1)}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{q} \cdot \int_{-\infty}^{+\infty} \ldots \int_{-\infty}^{+\infty} g^{(2)}\left(\mathbf{x}^{(2)}\right) f^{(2)}\left(\mathbf{x}^{(2)}\right) \mathrm{d} x_{q+1} \ldots \mathrm{~d} x_{p} \\
= & \mathbb{E}\left[g^{(1)}\left(\mathbf{x}^{(1)}\right)\right] \mathbb{E}\left[g^{(2)}\left(\mathbf{x}^{(2)}\right)\right] .
\end{aligned}
$$

If $g(x)$ is complex-valued, then we have

$$
\begin{aligned}
& g(\mathbf{x}) \\
= & {\left[g_{1}^{(1)}\left(\mathbf{x}^{(1)}\right)+\mathrm{i} g_{2}^{(1)}\left(\mathbf{x}^{(1)}\right)\right]\left[g_{1}^{(2)}\left(\mathbf{x}^{(2)}\right)+\mathrm{i} g_{2}^{(2)}\left(\mathbf{x}^{(2)}\right)\right] } \\
= & g_{1}^{(1)}\left(\mathbf{x}^{(1)}\right) g_{1}^{(2)}\left(\mathbf{x}^{(2)}\right)-g_{2}^{(1)}\left(\mathbf{x}^{(1)}\right) g_{2}^{(2)}\left(\mathbf{x}^{(2)}\right)+\mathrm{i}\left[g_{1}^{(1)}\left(\mathbf{x}^{(1)}\right) g_{2}^{(2)}\left(\mathbf{x}^{(2)}\right)+g_{2}^{(1)}\left(\mathbf{x}^{(1)}\right) g_{1}^{(2)}\left(\mathbf{x}^{(2)}\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbb{E}[g(\mathbf{x})] \\
= & \mathbb{E}\left[g_{1}^{(1)}\left(\mathbf{x}^{(1)}\right) g_{1}^{(2)}\left(\mathbf{x}^{(2)}\right)\right]-\mathbb{E}\left[g_{2}^{(1)}\left(\mathbf{x}^{(1)}\right) g_{2}^{(2)}\left(\mathbf{x}^{(2)}\right)\right]+\mathrm{i} \mathbb{E}\left[g_{1}^{(1)}\left(\mathbf{x}^{(1)}\right) g_{2}^{(2)}\left(\mathbf{x}^{(2)}\right)+g_{2}^{(1)}\left(\mathbf{x}^{(1)}\right) g_{1}^{(2)}\left(\mathbf{x}^{(2)}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
= & \mathbb{E}\left[g_{1}^{(1)}\left(\mathbf{x}^{(1)}\right)\right] \mathbb{E}\left[g_{1}^{(2)}\left(\mathbf{x}^{(2)}\right)\right]-\mathbb{E}\left[g_{2}^{(1)}\left(\mathbf{x}^{(1)}\right)\right] \mathbb{E}\left[g_{2}^{(2)}\left(\mathbf{x}^{(2)}\right)\right] \\
& +\mathrm{i} \mathbb{E}\left[g_{1}^{(1)}\left(\mathbf{x}^{(1)}\right)\right] \mathbb{E}\left[g_{2}^{(2)}\left(\mathbf{x}^{(2)}\right)\right]+\mathrm{i} \mathbb{E}\left[g_{2}^{(1)}\left(\mathbf{x}^{(1)}\right)\right] \mathbb{E}\left[g_{1}^{(2)}\left(\mathbf{x}^{(2)}\right)\right] \\
= & {\left[\mathbb{E}\left[g_{1}^{(1)}\left(\mathbf{x}^{(1)}\right)\right]+\mathrm{i} \mathbb{E}\left[g_{2}^{(1)}\left(\mathbf{x}^{(1)}\right)\right]\right]\left[\mathbb{E}\left[g_{1}^{(2)}\left(\mathbf{x}^{(2)}\right)\right]+\mathrm{i} \mathbb{E}\left[g_{2}^{(2)}\left(\mathbf{x}^{(2)}\right)\right]\right] } \\
= & \mathbb{E}\left[g^{(1)}\left(\mathbf{x}^{(1)}\right)\right] \mathbb{E}\left[g^{(2)}\left(\mathbf{x}^{(2)}\right)\right] .
\end{aligned}
$$

Theorem 2.8. The characteristic function of \mathbf{x} distributed according to $\mathcal{N}_{p}(\mu, \boldsymbol{\Sigma})$ is

$$
\phi(\mathbf{t})=\exp \left(\mathrm{i} \mathbf{t}^{\top} \boldsymbol{\mu}-\frac{1}{2} \mathbf{t}^{\top} \boldsymbol{\Sigma} \mathbf{t}\right) .
$$

for every $\mathbf{t} \in \mathbb{R}^{p}$.
Proof. For standard normal distribution $\mathbf{y} \sim \mathcal{N}_{p}(\mathbf{0}, \mathbf{I})$, we have

$$
\begin{aligned}
\phi_{0}(\mathbf{t}) & =\mathbb{E}\left[\exp \left(\mathrm{i} \mathbf{t}^{\top} \mathbf{y}\right)\right] \\
& =\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \frac{\exp \left(\mathrm{i} \mathbf{t}^{\top} \mathbf{y}\right)}{(2 \pi)^{p / 2}} \exp \left(-\frac{1}{2} \mathbf{y}^{\top} \mathbf{y}\right) \mathrm{d} y_{1} \ldots \mathrm{~d} y_{p} \\
& =\prod_{j=1}^{p}\left(\int_{-\infty}^{+\infty} \frac{\exp \left(\mathrm{i} t_{j} y_{j}\right)}{(2 \pi)^{p / 2}} \exp \left(-\frac{1}{2} y_{j}^{2}\right) \mathrm{d} y_{j}\right) \\
& =\prod_{j=1}^{p}\left(\int_{-\infty}^{+\infty} \frac{1}{(2 \pi)^{p / 2}} \exp \left(-\frac{1}{2}\left(y_{j}-\mathrm{i} t_{j}\right)^{2}-\frac{1}{2} t_{j}^{2}\right) \mathrm{d} y_{j}\right) \\
& =\prod_{j=1}^{p}\left(\exp \left(-\frac{1}{2} t_{j}^{2}\right) \int_{-\infty}^{+\infty} \frac{1}{(2 \pi)^{p / 2}} \exp \left(-\frac{1}{2} z_{j}^{2}\right) \mathrm{d} z_{j}\right) \\
& =\prod_{j=1}^{p}\left(\exp \left(-\frac{1}{2} t_{j}^{2}\right)\right)=\exp \left(-\frac{1}{2} \mathbf{t}^{\top} \mathbf{t}\right) .
\end{aligned}
$$

For the general case of $\mathbf{x} \sim \mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, we can write $\mathbf{x}=\mathbf{A} \mathbf{y}+\boldsymbol{\mu}$ such that $\mathbf{y} \sim \mathcal{N}_{p}(\mathbf{0}, \mathbf{I})$ and $\boldsymbol{\Sigma}=\mathbf{A} \mathbf{A}^{\top}$. Then we have

$$
\begin{aligned}
\phi(\mathbf{t}) & =\mathbb{E}\left[\exp \left(\mathrm{i} \mathbf{t}^{\top} \mathbf{x}\right)\right] \\
& =\mathbb{E}\left[\exp \left(\mathrm{i} \mathbf{t}^{\top}(\mathbf{A} \mathbf{y}+\boldsymbol{\mu})\right)\right] \\
& =\exp \left(\mathrm{i} \mathbf{t}^{\top} \boldsymbol{\mu}\right) \mathbb{E}\left[\exp \left(\mathrm{i}\left(\mathbf{A}^{\top} \mathbf{t}\right)^{\top} \mathbf{y}\right)\right] \\
& =\exp \left(\mathrm{i} \mathbf{t}^{\top} \boldsymbol{\mu}\right) \phi_{0}\left(\mathbf{A}^{\top} \mathbf{t}\right) \\
& =\exp \left(\mathrm{i} \mathbf{t}^{\top} \boldsymbol{\mu}\right) \exp \left(-\frac{1}{2} \mathbf{t}^{\top} \mathbf{A} \mathbf{A}^{\top} \mathbf{t}\right) \\
& =\exp \left(\mathrm{i} \mathbf{t}^{\top} \boldsymbol{\mu}-\frac{1}{2} \mathbf{t}^{\top} \boldsymbol{\Sigma} \mathbf{t}\right)
\end{aligned}
$$

Remark 2.2. Denote the characteristic function of $\mathbf{x} \in \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ as $\phi_{\mathbf{x}}(\mathbf{t})=\exp \left(\mathrm{i} \mathbf{t}^{\top} \boldsymbol{\mu}-\frac{1}{2} \mathbf{t}^{\top} \boldsymbol{\Sigma} \mathbf{t}\right)$. For $\mathbf{z}=\mathbf{D} \mathbf{x}$, the characteristic function of \mathbf{z} is

$$
\phi_{\mathbf{z}}(\mathbf{t})=\mathbb{E}\left[\exp \left(\mathrm{i} \mathbf{t}^{\top} \mathbf{z}\right)\right]=\mathbb{E}\left[\exp \left(\mathrm{i} \mathbf{t}^{\top} \mathbf{D} \mathbf{x}\right)\right]=\mathbb{E}\left[\exp \left(\mathrm{i}\left(\mathbf{D}^{\top} \mathbf{t}\right)^{\top} \mathbf{x}\right)\right]=\exp \left(\mathrm{i} \mathbf{t}^{\top}(\mathbf{D} \boldsymbol{\mu})-\frac{1}{2} \mathbf{t}^{\top}\left(\mathbf{D}^{\top} \boldsymbol{\Sigma} \mathbf{D}\right) \mathbf{t}\right)
$$

which implies $\mathbf{z} \sim \mathcal{N}\left(\mathbf{D} \boldsymbol{\mu}, \mathbf{D}^{\top} \boldsymbol{\Sigma} \mathbf{D}\right)$ and we prove Theorem 2.4.

Theorem 2.9. If every linear combination of the components of a random vector \mathbf{y} is normally distributed, then \mathbf{y} is normally distributed.

Proof. Let \mathbf{y} is a random vector with $\mathbb{E}[\mathbf{y}]=\boldsymbol{\mu}$ and $\operatorname{Cov}[\mathbf{y}]=\boldsymbol{\Sigma}$. Suppose the univariate random variable $\mathbf{u}^{\top} \mathbf{y}$ (linear combination of \mathbf{y}) is normal distributed for any $\mathbf{u} \in \mathbb{R}^{p}$. The characteristic function of $\mathbf{u}^{\top} \mathbf{y}$ is

$$
\begin{aligned}
\phi_{\mathbf{u}^{\top} \mathbf{y}}(t) & =\mathbb{E}\left[\exp \left(\mathrm{i} t \mathbf{u}^{\top} \mathbf{y}\right)\right] \\
& =\exp \left(\mathrm{i} t \mathbb{E}\left[\mathbf{u}^{\top} \mathbf{y}\right]-\frac{1}{2} t^{2} \operatorname{Cov}\left(\mathbf{u}^{\top} \mathbf{y}\right)\right) \\
& =\exp \left(\mathrm{i} t \mathbf{u}^{\top} \boldsymbol{\mu}-\frac{1}{2} t^{2} \mathbf{u}^{\top} \mathbf{\Sigma} \mathbf{u}\right)
\end{aligned}
$$

Set $t=1$, then we have

$$
\mathbb{E}\left[\exp \left(\mathrm{i} \mathbf{u}^{\top} \mathbf{y}\right)\right]=\exp \left(\mathrm{i} \mathbf{u}^{\top} \boldsymbol{\mu}-\frac{1}{2} \mathbf{u}^{\top} \boldsymbol{\Sigma} \mathbf{u}\right)
$$

which implies the characteristic function of \mathbf{y} is

$$
\phi_{\mathbf{y}}(\mathbf{u})=\exp \left(\mathrm{i} \mathbf{u}^{\top} \boldsymbol{\mu}-\frac{1}{2} \mathbf{u}^{\top} \boldsymbol{\Sigma} \mathbf{u}\right)
$$

that is, $\mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
Theorem 2.10. Let $\mathbf{x} \sim \mathcal{N}_{p}\left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right)$, $\mathbf{y} \sim \mathcal{N}_{p}\left(\boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right)$ and $\mathbf{z}=\mathbf{x}+\mathbf{y}$. Suppose that \mathbf{x} and \mathbf{y} are independent. Prove $\mathbf{z} \sim \mathcal{N}_{p}\left(\boldsymbol{\mu}_{1}+\boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{1}+\boldsymbol{\Sigma}_{2}\right)$.

Proof. Let $\boldsymbol{\phi}_{\mathbf{x}}, \boldsymbol{\phi}_{\mathbf{y}}$ and $\boldsymbol{\phi}_{\mathbf{z}}$ be the characteristic functions of \mathbf{x}, \mathbf{y} and \mathbf{z}. Then we have

$$
\begin{aligned}
& \phi_{\mathbf{z}}(\mathbf{t}) \\
= & \mathbb{E}\left[\exp \left(i \mathbf{t}^{\top}(\mathbf{x}+\mathbf{y})\right)\right] \\
= & \mathbb{E}\left[\exp \left(\mathrm{i} \mathbf{t}^{\top} \mathbf{x}\right)\right] \mathbb{E}\left[\exp \left(\mathrm{i} \mathbf{t}^{\top} \mathbf{y}\right)\right] \\
= & \exp \left(-\mathrm{i} \mathbf{t}^{\top} \boldsymbol{\mu}_{1}+\frac{1}{2} \mathbf{t}^{\top} \boldsymbol{\Sigma}_{1} \mathbf{t}\right) \exp \left(-\mathrm{i} \mathbf{t}^{\top} \boldsymbol{\mu}_{2}+\frac{1}{2} \mathbf{t}^{\top} \boldsymbol{\Sigma}_{2} \mathbf{t}\right) \\
= & \exp \left(-\mathrm{i} \mathbf{t}^{\top}\left(\boldsymbol{\mu}_{1}+\boldsymbol{\mu}_{2}\right)+\frac{1}{2} \mathbf{t}^{\top}\left(\boldsymbol{\Sigma}_{1}+\boldsymbol{\Sigma}_{2}\right) \mathbf{t}\right),
\end{aligned}
$$

which is the characteristic function of $\mathcal{N}_{p}\left(\boldsymbol{\mu}_{1}+\boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{1}+\boldsymbol{\Sigma}_{2}\right)$.

3 Estimation of the Mean Vector and the Covariance

Theorem 3.1. If $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}$ constitute a sample from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $p<N$, the maximum likelihood estimators of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ are

$$
\hat{\boldsymbol{\mu}}=\overline{\mathbf{x}}=\frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \quad \text { and } \quad \hat{\boldsymbol{\Sigma}}=\frac{1}{N} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top}
$$

respectively.
Proof. The logarithm of the likelihood function is

$$
\ln L=-\frac{P N}{2} \ln 2 \pi-\frac{N}{2} \ln (\operatorname{det}(\boldsymbol{\Sigma}))-\frac{1}{2} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}\right)
$$

We have

$$
\begin{aligned}
& \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}\right) \\
= & \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)+\sum_{\alpha=1}^{N}(\overline{\mathbf{x}}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right) \\
& +\sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top} \boldsymbol{\Sigma}^{-1}(\overline{\mathbf{x}}-\boldsymbol{\mu})+\sum_{\alpha=1}^{N}(\overline{\mathbf{x}}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\overline{\mathbf{x}}-\boldsymbol{\mu}) \\
= & \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)+\sum_{\alpha=1}^{N}(\overline{\mathbf{x}}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\overline{\mathbf{x}}-\boldsymbol{\mu}) \\
\geq & \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right),
\end{aligned}
$$

where the equality holds when $\boldsymbol{\mu}=\overline{\mathbf{x}}$. Hence, the estimator of means should be $\hat{\boldsymbol{\mu}}=\overline{\mathbf{x}}$.
Now, we only need to study how to maximize

$$
-\frac{p N}{2} \ln 2 \pi-\frac{N}{2} \ln (\operatorname{det}(\boldsymbol{\Sigma}))-\frac{1}{2} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right) .
$$

We let $\boldsymbol{\Psi}=\boldsymbol{\Sigma}^{-1}$ and

$$
\begin{aligned}
l(\boldsymbol{\Psi}) & =-\frac{P N}{2} \ln 2 \pi-\frac{N}{2} \ln \left(\operatorname{det}\left(\boldsymbol{\Psi}^{-1}\right)\right)-\frac{1}{2} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top} \boldsymbol{\Psi}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right) \\
& =-\frac{P N}{2} \ln 2 \pi+\frac{N}{2} \ln (\operatorname{det}(\boldsymbol{\Psi}))-\frac{1}{2} \sum_{\alpha=1}^{N} \operatorname{tr}\left(\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top} \boldsymbol{\Psi}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)\right) \\
& =-\frac{P N}{2} \ln 2 \pi+\frac{N}{2} \ln (\operatorname{det}(\boldsymbol{\Psi}))-\frac{1}{2} \sum_{\alpha=1}^{N} \operatorname{tr}\left(\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top} \mathbf{\Psi}\right)
\end{aligned}
$$

then

$$
\begin{aligned}
\frac{\partial l(\mathbf{\Psi})}{\partial \boldsymbol{\Psi}} & =\frac{\partial}{\partial \boldsymbol{\Psi}}\left(-\frac{P N}{2} \ln 2 \pi+\frac{N}{2} \ln (\operatorname{det}(\mathbf{\Psi}))-\frac{1}{2} \sum_{\alpha=1}^{N} \operatorname{tr}\left(\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top} \mathbf{\Psi}\right)\right) \\
& =\frac{N}{2} \boldsymbol{\Psi}^{-1}-\frac{1}{2} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top} .
\end{aligned}
$$

We can verify $l(\Psi)$ is concave on the domain of symmetric positive definite matrices, which means the maximum is taken by $\frac{\partial f(\boldsymbol{\Psi})}{\partial \boldsymbol{\Psi}}=\mathbf{0}$, that is,

$$
\boldsymbol{\Sigma}=\boldsymbol{\Psi}^{-1}=\frac{1}{N} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top}
$$

Lemma 3.1. If $\mathbf{D} \in \mathbb{R}^{p \times p}$ is positive definite, the maximum of

$$
f(\mathbf{G})=-N \ln \operatorname{det}(\mathbf{G})-\operatorname{tr}\left(\mathbf{G}^{-1} \mathbf{D}\right)
$$

with respect to positive definite matrices \mathbf{G} exists, occurs at $\mathbf{G}=\frac{1}{N} \mathbf{D}$.

Proof. Let $\mathbf{D}=\mathbf{E E}^{\top}$ and $\mathbf{E}^{\top} \mathbf{G}^{-1} \mathbf{E}=\mathbf{H}$. Then we have $\mathbf{G}=\mathbf{E H}^{-1} \mathbf{E}^{\top}$,

$$
\operatorname{det}(\mathbf{G})=\operatorname{det}(\mathbf{E}) \operatorname{det}\left(\mathbf{H}^{-1}\right) \operatorname{det}\left(\mathbf{E}^{\top}\right)=\operatorname{det}\left(\mathbf{E} \mathbf{E}^{\top}\right) \operatorname{det}\left(\mathbf{H}^{-1}\right)=\frac{\operatorname{det}(\mathbf{D})}{\operatorname{det}(\mathbf{H})}
$$

and

$$
\operatorname{tr}\left(\mathbf{G}^{-1} \mathbf{D}\right)=\operatorname{tr}\left(\mathbf{G}^{-1} \mathbf{E} \mathbf{E}^{\top}\right)=\operatorname{tr}\left(\mathbf{E}^{\top} \mathbf{G}^{-1} \mathbf{E}\right)=\operatorname{tr}(\mathbf{H})
$$

Then the function to be maximized (with respect to positive definite \mathbf{H}) is

$$
g(\mathbf{H})=-N \ln \operatorname{det}(\mathbf{D})+N \ln \operatorname{det}(\mathbf{H})-\operatorname{tr}(\mathbf{H}) .
$$

Let $\mathbf{H}=\mathbf{T} \mathbf{T}^{\top}$ here \mathbf{L} is lower triangular. Then the maximum of

$$
\begin{aligned}
g(\mathbf{H}) & =-N \ln \operatorname{det}(\mathbf{D})+N \ln \operatorname{det}(\mathbf{H})-\operatorname{tr}(\mathbf{H}) \\
& =-N \ln \operatorname{det}(\mathbf{D})+N \ln (\operatorname{det}(\mathbf{T}))^{2}-\operatorname{tr}\left(\mathbf{T} \mathbf{T}^{\top}\right) \\
& =-N \ln \operatorname{det}(\mathbf{D})+N \ln \left(\prod_{i=1}^{p} t_{i i}^{2}\right)-\sum_{i \geq j} t_{i j}^{2} \\
& =-N \ln \operatorname{det}(\mathbf{D})+\sum_{i=1}^{p}\left(N \ln \left(t_{i i}^{2}\right)-t_{i i}^{2}\right)-\sum_{i>j} t_{i j}^{2}
\end{aligned}
$$

occurs at $t_{i i}^{2}=N$ and $t_{i j}=0$ for $i \neq j$; that is $\mathbf{H}=N \mathbf{I}$. Then

$$
\mathbf{G}=\frac{1}{N} \mathbf{D}
$$

Theorem 3.2. Let $f(\theta)$ be a real-valued function defined on a set \mathcal{S} and let ϕ be a single-valued function, with a single-valued inverse, on \mathcal{S} to a set \mathcal{S}^{*}. Let

$$
g\left(\theta^{*}\right)=f\left(\phi^{-1}\left(\theta^{*}\right)\right)
$$

Then if $f(\theta)$ attains a maximum at $\theta=\theta_{0}$, then $g\left(\theta^{*}\right)$ attains a maximum at $\theta^{*}=\theta_{0}^{*}=\phi\left(\theta_{0}\right)$. If the maximum of $f(\theta)$ at θ_{0} is unique, so is the maximum of $g\left(\theta^{*}\right)$ at θ_{0}^{*}.

Proof. By hypothesis $f\left(\theta_{0}\right) \geq f(\theta)$ for all $\theta \in \mathcal{S}$. Then for any $\theta^{*} \in \mathcal{S}^{*}$, we have

$$
g\left(\theta^{*}\right)=f\left(\phi^{-1}\left(\theta^{*}\right)\right)=f(\theta) \leq f\left(\theta_{0}\right)=g\left(\phi\left(\theta_{0}\right)\right)=g\left(\theta_{0}^{*}\right)
$$

Thus $g\left(\theta^{*}\right)$ attains a maximum at $\theta_{0}^{*}=\phi\left(\theta_{0}\right)$. If the maximum of $f(\theta)$ at θ_{0} is unique, there is strict inequality above for $\theta \neq \theta_{0}$, and the maximum of $g\left(\theta^{*}\right)$ is unique.

Theorem 3.3. If $\phi: \mathcal{S} \rightarrow \mathcal{S}^{*}$ is not one-to-one, we let

$$
\phi^{-1}\left(\boldsymbol{\theta}^{*}\right)=\left\{\boldsymbol{\theta}: \boldsymbol{\theta}^{*}=\boldsymbol{\phi}(\boldsymbol{\theta})\right\} .
$$

and the induced likelihood function

$$
g\left(\boldsymbol{\theta}^{*}\right)=\sup \left\{f(\boldsymbol{\theta}): \boldsymbol{\theta}^{*}=\boldsymbol{\phi}(\boldsymbol{\theta})\right\}
$$

If $\boldsymbol{\theta}=\hat{\boldsymbol{\theta}}$ maximize $f(\boldsymbol{\theta})$, then $\hat{\boldsymbol{\theta}}^{*}=\boldsymbol{\phi}(\hat{\boldsymbol{\theta}})$ also maximize $g\left(\boldsymbol{\theta}^{*}\right)$.

Proof. The definition means

$$
\sup _{\boldsymbol{\theta}^{*} \in \mathcal{S}^{*}} g\left(\boldsymbol{\theta}^{*}\right)=\sup _{\boldsymbol{\theta}^{*} \in \mathcal{S}^{*}} \sup _{\boldsymbol{\theta}^{*}=\boldsymbol{\phi}(\boldsymbol{\theta})} f(\boldsymbol{\theta})=\sup _{\boldsymbol{\theta} \in \mathcal{S}} f(\boldsymbol{\theta}) .
$$

The definition of $\hat{\boldsymbol{\theta}}^{*}=\boldsymbol{\phi}(\hat{\boldsymbol{\theta}})$ means

$$
f(\hat{\boldsymbol{\theta}})=\sup _{\hat{\boldsymbol{\theta}}^{*}=\boldsymbol{\phi}(\boldsymbol{\theta})} f(\boldsymbol{\theta})=g\left(\hat{\boldsymbol{\theta}}^{*}\right)
$$

Since $\boldsymbol{\theta}=\hat{\boldsymbol{\theta}}$ maximize $f(\boldsymbol{\theta})$, we have

$$
g\left(\hat{\boldsymbol{\theta}}^{*}\right)=f(\hat{\boldsymbol{\theta}})=\sup _{\boldsymbol{\theta} \in \mathcal{S}} f(\boldsymbol{\theta})=\sup _{\boldsymbol{\theta}^{*} \in \mathcal{S}^{*}} g\left(\boldsymbol{\theta}^{*}\right),
$$

which implies $\hat{\boldsymbol{\theta}}^{*}$ maximize $g\left(\boldsymbol{\theta}^{*}\right)$.
Corollary 3.1. If $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ constitutes a sample from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, let $\rho_{i j}=\sigma_{i j} /\left(\sigma_{i} \sigma_{j}\right)$. Then the maximum likelihood estimator of $\rho_{i j}$ is

$$
\hat{\rho}_{i j}=\frac{\sum_{\alpha=1}^{N}\left(x_{i \alpha}-\bar{x}_{i}\right)\left(x_{j \alpha}-\bar{x}_{j}\right)}{\sqrt{\sum_{\alpha=1}^{N}\left(x_{i \alpha}-\bar{x}_{i}\right)^{2}} \sqrt{\sum_{\alpha=1}^{N}\left(x_{j \alpha}-\bar{x}_{j}\right)^{2}}}
$$

Proof. The set of parameters $\mu_{i}=\mu_{i}, \sigma_{i}^{2}=\sigma_{i i}$ and $\rho_{i j}=\sigma_{i j} / \sqrt{\sigma_{i i} \sigma_{j j}}$ is a one-to-one transform of the set of parameters $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$. Then the estimator of ρ is

$$
\hat{\rho}_{i j}=\frac{\hat{\sigma}_{i j}}{\sqrt{\hat{\sigma}_{i i} \hat{\sigma}_{j j}}}=\frac{\sum_{\alpha=1}^{N}\left(x_{i \alpha}-\bar{x}_{i}\right)\left(x_{j \alpha}-\bar{x}_{j}\right)}{\sqrt{\sum_{\alpha=1}^{N}\left(x_{i \alpha}-\bar{x}_{i}\right)^{2}} \sqrt{\sum_{\alpha=1}^{N}\left(x_{j \alpha}-\bar{x}_{j}\right)^{2}}} .
$$

Theorem 3.4. Suppose $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ are independent, where $\mathbf{x}_{\alpha} \sim \mathcal{N}_{p}\left(\boldsymbol{\mu}_{\alpha}, \boldsymbol{\Sigma}\right)$. Let $\mathbf{C} \in \mathbb{R}^{N \times N}$ be an orthogonal matrix, then

$$
\mathbf{y}_{\alpha}=\sum_{\beta=1}^{N} c_{\alpha \beta} \mathbf{x}_{\beta} \sim \mathcal{N}_{p}\left(\boldsymbol{\nu}_{\alpha}, \boldsymbol{\Sigma}\right)
$$

where $\boldsymbol{\nu}_{\alpha}=\sum_{\beta=1}^{N} c_{\alpha \beta} \boldsymbol{\mu}_{\beta}$ for $\alpha=1, \ldots, N$ and $\mathbf{y}_{1}, \ldots, \mathbf{y}_{N}$ are independent.
Proof. The set of vectors $\mathbf{y}_{1}, \ldots, \mathbf{y}_{N}$ have a joint normal distribution, because the entire set of components is a set of linear combinations of the components of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$, which have a joint normal distribution. The expected value of \mathbf{y}_{α} is

$$
\mathbb{E}\left[\mathbf{y}_{\alpha}\right]=\mathbb{E}\left[\sum_{\beta=1}^{N} c_{\alpha \beta} \mathbf{x}_{\beta}\right]=\sum_{\beta=1}^{N} c_{\alpha \beta} \mathbb{E}\left[\mathbf{x}_{\beta}\right]=\sum_{\beta=1}^{N} c_{\alpha \beta} \boldsymbol{\mu}_{\beta} .
$$

The covariance matrix between \mathbf{y}_{α} and \mathbf{y}_{γ} is

$$
\begin{aligned}
& \operatorname{Cov}\left[\mathbf{y}_{\alpha}, \mathbf{y}_{\gamma}\right] \\
= & \mathbb{E}\left[\left(\mathbf{y}_{\alpha}-\boldsymbol{\nu}_{\alpha}\right)\left(\mathbf{y}_{\gamma}-\boldsymbol{\nu}_{\gamma}\right)^{\top}\right] \\
= & \mathbb{E}\left[\left(\sum_{\beta=1}^{N} c_{\alpha \beta}\left(\mathbf{x}_{\beta}-\boldsymbol{\mu}_{\beta}\right)\right)\left(\sum_{\xi=1}^{N} c_{\gamma \xi}\left(\mathbf{x}_{\xi}-\boldsymbol{\mu}_{\xi}\right)^{\top}\right)\right] \\
= & \sum_{\beta=1}^{N} \sum_{\xi=1}^{N} c_{\alpha \beta} c_{\gamma \xi} \mathbb{E}\left[\left(\mathbf{x}_{\beta}-\boldsymbol{\mu}_{\beta}\right)\left(\mathbf{x}_{\xi}-\boldsymbol{\mu}_{\xi}\right)^{\top}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\beta=1}^{N} \sum_{\xi=1}^{N} c_{\alpha \beta} c_{\gamma \xi} \delta_{\beta \xi} \boldsymbol{\Sigma} \\
& =\sum_{\beta=1}^{N} c_{\alpha \beta} c_{\gamma \beta} \boldsymbol{\Sigma}
\end{aligned}
$$

where

$$
\delta_{\beta \xi}= \begin{cases}1, & \text { if } \beta=\xi \\ 0, & \text { if } \beta \neq \xi\end{cases}
$$

If $\alpha=\gamma$, we have $\sum_{\beta=1}^{N} c_{\alpha \beta} c_{\gamma \beta}=\sum_{\beta=1}^{N} c_{\alpha \beta} c_{\alpha \beta}=1$; otherwise, we have $\sum_{\beta=1}^{N} c_{\alpha \beta} c_{\gamma \beta}=0$. Hence, we have

$$
\operatorname{Cov}\left[\mathbf{y}_{\alpha}, \mathbf{y}_{\gamma}\right]=\sum_{\beta=1}^{N} c_{\alpha \beta} c_{\gamma \beta} \boldsymbol{\Sigma}=\delta_{\alpha \gamma} \boldsymbol{\Sigma}
$$

The set of vectors $\mathbf{y}_{1}, \ldots, \mathbf{y}_{N}$ have a joint normal distribution, we have proved $\operatorname{Cov}\left[\mathbf{y}_{\alpha}\right]=\boldsymbol{\Sigma}$ for $\alpha=1, \ldots, N$ and $\mathbf{y}_{1}, \ldots, \mathbf{y}_{N}$ are independent.

Lemma 3.2. If

$$
\mathbf{C}=\left[\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 N} \\
c_{21} & c_{22} & \ldots & c_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
c_{N 1} & c_{N 2} & \ldots & c_{N N}
\end{array}\right]=\left[\begin{array}{c}
c_{1}^{\top} \\
c_{2}^{\top} \\
\vdots \\
c_{N}^{\top}
\end{array}\right] \in \mathbb{R}^{N \times N}
$$

is orthogonal, then $\sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top}=\sum_{\beta=1}^{N} \mathbf{y}_{\alpha} \mathbf{y}_{\alpha}^{\top}$ where $\mathbf{y}_{\alpha}=\sum_{\beta=1}^{N} c_{\alpha \beta} \mathbf{x}_{\alpha}$ for $\alpha=1, \ldots, N$.
Proof. Let

$$
\mathbf{X}=\left[\begin{array}{c}
\mathbf{x}_{1}^{\top} \\
\mathbf{x}_{2}^{\top} \\
\vdots \\
\mathbf{x}_{N}^{\top}
\end{array}\right] \in \mathbb{R}^{N \times p} .
$$

We have

$$
\sum_{\alpha=1}^{N} \mathbf{y}_{\alpha} \mathbf{y}_{\alpha}^{\top}=\sum_{\beta=1}^{N} \mathbf{X}^{\top} \mathbf{c}_{\alpha} \mathbf{c}_{\alpha}^{\top} \mathbf{X}=\mathbf{X}^{\top}\left(\sum_{\beta=1}^{N} \mathbf{c}_{\alpha} \mathbf{c}_{\alpha}^{\top}\right) \mathbf{X}=\mathbf{X}^{\top}\left(\mathbf{C}^{\top} \mathbf{C}\right) \mathbf{X}=\mathbf{X}^{\top} \mathbf{X}=\sum_{\beta=1}^{N} \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top}
$$

Remark 3.1. We can also write $\mathbf{y}_{\alpha}=\mathbf{X}^{\top} \mathbf{c}_{\alpha}$ and $\mathbf{Y}=\mathbf{C X}$ by defining \mathbf{Y} like \mathbf{X}.
Theorem 3.5. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ be independent, each distributed according to $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then the mean of the sample

$$
\hat{\boldsymbol{\mu}}=\overline{\mathbf{x}}=\frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha}
$$

is distributed according to $\mathcal{N}\left(\boldsymbol{\mu}, \frac{1}{N} \boldsymbol{\Sigma}\right)$ and independent of

$$
\hat{\boldsymbol{\Sigma}}=\frac{1}{N} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top} .
$$

Additionally, we have $N \hat{\boldsymbol{\Sigma}}=\sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$, where $\mathbf{z}_{\alpha} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$ for $\alpha=1, \ldots, N$, and $\mathbf{z}_{1}, \ldots, \mathbf{z}_{N-1}$ are independent.
Proof. There exists an orthogonal matrix $\mathbf{B} \in \mathbb{R}^{p \times p}$ such that

$$
\mathbf{B}=\left[\begin{array}{cccc}
\times & \times & \cdots & \times \\
\times & \times & \cdots & \times \\
\vdots & \vdots & \ddots & \vdots \\
\frac{1}{\sqrt{N}} & \frac{1}{\sqrt{N}} & \cdots & \frac{1}{\sqrt{N}}
\end{array}\right]
$$

Let $\mathbf{A}=N \hat{\boldsymbol{\Sigma}}$ and let $\mathbf{z}_{\alpha}=\sum_{\beta=1}^{N} b_{\alpha \beta} \mathbf{x}_{\beta}$, then

$$
\mathbf{z}_{N}=\sum_{\beta=1}^{N} b_{N \beta} \mathbf{x}_{\beta}=\sum_{\beta=1}^{N} \frac{\mathbf{x}_{\beta}}{\sqrt{N}}=\sqrt{N} \overline{\mathbf{x}}
$$

By Lemma 3.2, we have

$$
\begin{aligned}
\mathbf{A} & =\sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top} \\
& =\sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top}-\sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \overline{\mathbf{x}}^{\top}-\sum_{\alpha=1}^{N} \overline{\mathbf{x}} \mathbf{x}_{\alpha}^{\top}+\sum_{\alpha=1}^{N} \overline{\mathbf{x}} \overline{\mathbf{x}}^{\top} \\
& =\sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top}-N \overline{\mathbf{x}} \overline{\mathbf{x}}^{\top}-N \overline{\mathbf{x}} \overline{\mathbf{x}}^{\top}+N \overline{\mathbf{x}} \overline{\mathbf{x}}^{\top} \\
& =\sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top}-N \overline{\mathbf{x}} \overline{\mathbf{x}}^{\top} \\
& =\sum_{\alpha=1}^{N} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}-\mathbf{z}_{N} \mathbf{z}_{N}^{\top} \\
& =\sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}
\end{aligned}
$$

Lemma 3.2 also states \mathbf{z}_{N} is independent of $\mathbf{z}_{1}, \ldots, \mathbf{z}_{N-1}$, then the mean vector $\overline{\mathbf{x}}=\frac{1}{\sqrt{N}} \mathbf{z}_{N}$ is independent of \mathbf{A} and $\hat{\boldsymbol{\Sigma}}=\frac{1}{N} \mathbf{A}$. Since $\overline{\mathbf{x}}=\frac{1}{\sqrt{N}} \mathbf{z}_{n}=\frac{1}{\sqrt{N}} \sum_{\beta=1}^{N} b_{N \beta} \mathbf{x}_{\beta}$, Theorem 3.4 implies

$$
\mathbb{E}[\overline{\mathbf{x}}]=\mathbb{E}\left[\frac{1}{\sqrt{N}} \sum_{\beta=1}^{N} b_{N \beta} \mathbf{x}_{\beta}\right]=\frac{1}{\sqrt{N}} \sum_{\beta=1}^{N} \frac{1}{\sqrt{N}} \boldsymbol{\mu}=\boldsymbol{\mu}, \quad \text { and } \quad \operatorname{Cov}[\overline{\mathbf{x}}]=\frac{1}{N} \operatorname{Cov}\left[\sum_{\beta=1}^{N} b_{N \beta} \mathbf{x}_{\beta}\right]=\frac{1}{N} \boldsymbol{\Sigma}
$$

Hence, we have $\overline{\mathbf{x}} \sim \mathcal{N}\left(\boldsymbol{\mu}, \frac{1}{N} \boldsymbol{\Sigma}\right)$. For $\alpha=1, \ldots, N-1$, we also have

$$
\mathbb{E}\left[\mathbf{z}_{\alpha}\right]=\mathbb{E}\left[\sum_{\beta=1}^{N} b_{\alpha \beta} \mathbf{x}_{\beta}\right]=\sum_{\beta=1}^{N} b_{\alpha \beta} \mathbb{E}\left[\mathbf{x}_{\beta}\right]=\sum_{\beta=1}^{N} b_{\alpha \beta} \boldsymbol{\mu}=\sum_{\beta=1}^{N} b_{\alpha \beta} b_{N \beta} \sqrt{N} \boldsymbol{\mu}=\mathbf{0}
$$

and Theorem 3.4 implies $\mathbf{z}_{\alpha} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$.

Theorem 3.6. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ be p-dimensional random vector and they are independent. Denote

$$
\overline{\mathbf{x}}=\frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \quad \text { and } \quad \hat{\mathbf{\Sigma}}=\frac{1}{N} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top}
$$

If $\mathbb{E}\left[\mathbf{x}_{1}\right]=\cdots=\mathbb{E}\left[\mathbf{x}_{N}\right]=\boldsymbol{\mu}$ and $\operatorname{Cov}\left[\mathbf{x}_{1}\right]=\cdots=\operatorname{Cov}\left[\mathbf{x}_{N}\right]=\boldsymbol{\Sigma}$, then we have

$$
\mathbb{E}[\hat{\boldsymbol{\Sigma}}]=\frac{N-1}{N} \boldsymbol{\Sigma}
$$

Proof. We have

$$
\boldsymbol{\Sigma}=\operatorname{Cov}\left[\mathbf{x}_{\alpha}\right]=\mathbb{E}\left[\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}\right)\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}\right)^{\top}\right]=\mathbb{E}\left[\mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top}-\mathbf{x}_{\alpha} \boldsymbol{\mu}^{\top}-\boldsymbol{\mu} \mathbf{x}_{\alpha}^{\top}+\boldsymbol{\mu} \boldsymbol{\mu}^{\top}\right]=\mathbb{E}\left[\mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top}\right]-\boldsymbol{\mu} \boldsymbol{\mu}^{\top}
$$

and

$$
\frac{1}{n} \boldsymbol{\Sigma}=\operatorname{Cov}[\overline{\mathbf{x}}]=\mathbb{E}\left[(\overline{\mathbf{x}}-\mathbb{E}[\overline{\mathbf{x}}])(\overline{\mathbf{x}}-\mathbb{E}[\overline{\mathbf{x}}])^{\top}\right]=\mathbb{E}\left[\overline{\mathbf{x}} \overline{\mathbf{x}}^{\top}\right]-\boldsymbol{\mu} \boldsymbol{\mu}^{\top}
$$

Hence, we obtain

$$
\begin{aligned}
\mathbb{E}[\hat{\mathbf{\Sigma}}] & =\mathbb{E}\left[\frac{1}{N} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top}\right] \\
& =\mathbb{E}\left[\frac{1}{N} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top}-\overline{\mathbf{x}} \mathbf{x}_{\alpha}^{\top}-\mathbf{x}_{\alpha} \overline{\mathbf{x}}^{\top}+\overline{\mathbf{x}} \overline{\mathbf{x}}^{\top}\right)\right] \\
& =\mathbb{E}\left[\frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top}-\overline{\mathbf{x}} \overline{\mathbf{x}}^{\top}\right] \\
& =\mathbb{E}\left[\mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top}\right]-\mathbb{E}\left[\overline{\mathbf{x}} \overline{\mathbf{x}}^{\top}\right] \\
& =\boldsymbol{\Sigma}+\boldsymbol{\mu} \boldsymbol{\mu}^{\top}-\left(\frac{1}{n} \boldsymbol{\Sigma}+\boldsymbol{\mu} \boldsymbol{\mu}^{\top}\right) \\
& =\frac{n-1}{n} \boldsymbol{\Sigma} .
\end{aligned}
$$

Theorem 3.7. Using the notation of Theorem 3.1, if $N>p$, the probability is 1 of drawing a sample so that

$$
\hat{\boldsymbol{\Sigma}}=\frac{1}{N} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top}
$$

is positive definite.
Proof. The proof of Theorem 3.1 shows that $\mathbf{A}=\widetilde{\mathbf{Z}}^{\top} \widetilde{\mathbf{Z}}$ where

$$
\widetilde{\mathbf{Z}}=\left[\begin{array}{c}
\mathbf{z}_{1}^{\top} \\
\vdots \\
\mathbf{z}_{N-1}^{\top}
\end{array}\right] \in \mathbb{R}^{(N-1) \times p},
$$

which means $\operatorname{rank}(\hat{\boldsymbol{\Sigma}})=\operatorname{rank}(\mathbf{A})=\operatorname{rank}(\widetilde{\mathbf{Z}})$. Then the probability is 1 of $\hat{\boldsymbol{\Sigma}} \succ \mathbf{0}$ is equivalent to

$$
\operatorname{Pr}(\operatorname{rank}(\widetilde{\mathbf{Z}})=p)=1
$$

Since appending rows at the end of $\widetilde{\mathbf{Z}}$ will not increase its rank, we only needs to consider the case of $N=p+1\left(N-1=p\right.$ and $\left.\widetilde{\mathbf{Z}} \in \mathbb{R}^{p \times p}\right)$. We have

$$
\begin{aligned}
& \operatorname{Pr}\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{p} \text { are linearly dependent }\right) \\
\leq & \sum_{i=1}^{p} \operatorname{Pr}\left(\mathbf{z}_{i} \in \operatorname{span}\left\{\mathbf{z}_{1}, \ldots, \mathbf{z}_{i-1}, \mathbf{z}_{i}, \ldots, \mathbf{z}_{p}\right\}\right) \\
= & p \operatorname{Pr}\left(\mathbf{z}_{1} \in \operatorname{span}\left\{\mathbf{z}_{2}, \ldots, \mathbf{z}_{p}\right\}\right) \\
= & p \mathbb{E}\left[\operatorname{Pr}\left(\mathbf{z}_{1} \in \operatorname{span}\left\{\mathbf{z}_{2}, \mathbf{z}_{3}, \ldots, \mathbf{z}_{p}\right\} \mid \mathbf{z}_{2}=\boldsymbol{\alpha}_{2}, \ldots, \mathbf{z}_{p}=\boldsymbol{\alpha}_{p}\right)\right] \\
= & p \mathbb{E}[0]=0
\end{aligned}
$$

The second equality is obtained as follows

$$
\begin{aligned}
& \operatorname{Pr}\left(\mathbf{z}_{1} \in \operatorname{span}\left\{\mathbf{z}_{2}, \ldots, \mathbf{z}_{p}\right\}\right) \\
= & \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \operatorname{Pr}\left(\mathbf{z}_{1} \in \operatorname{span}\left\{\mathbf{z}_{2}, \ldots, \mathbf{z}_{p}\right\}, \mathbf{z}_{2}=\boldsymbol{\alpha}_{2}, \ldots, \mathbf{z}_{p}=\boldsymbol{\alpha}_{p}\right) \mathrm{d} \boldsymbol{\alpha}_{2} \ldots \mathrm{~d} \boldsymbol{\alpha}_{p} \\
= & \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \operatorname{Pr}\left(\mathbf{z}_{1} \in \operatorname{span}\left\{\mathbf{z}_{2}, \ldots, \mathbf{z}_{p}\right\} \mid \mathbf{z}_{2}=\boldsymbol{\alpha}_{2}, \ldots, \mathbf{z}_{p}=\boldsymbol{\alpha}_{p}\right) \operatorname{Pr}\left(\mathbf{z}_{2}=\boldsymbol{\alpha}_{2}, \ldots, \mathbf{z}_{p}=\boldsymbol{\alpha}_{p}\right) \mathrm{d} \boldsymbol{\alpha}_{2} \ldots \mathrm{~d} \boldsymbol{\alpha}_{p} \\
= & \mathbb{E}\left[\operatorname{Pr}\left(\mathbf{z}_{1} \in \operatorname{span}\left\{\mathbf{z}_{2}, \ldots, \mathbf{z}_{p}\right\} \mid \mathbf{z}_{2}=\boldsymbol{\alpha}_{2}, \ldots, \mathbf{z}_{p}=\boldsymbol{\alpha}_{p}\right)\right] \\
= & 0
\end{aligned}
$$

The last equality holds since $\operatorname{Pr}\left(\mathbf{z}_{1} \in \operatorname{span}\left\{\mathbf{z}_{2}, \ldots, \mathbf{z}_{p}\right\} \mid \mathbf{z}_{2}=\boldsymbol{\alpha}_{2}, \ldots, \mathbf{z}_{p}=\boldsymbol{\alpha}_{p}\right)$ is the probability of the event that \mathbf{z}_{1} lies in a subspace with the dimension no higher than $p-1$.

Theorem 3.8. If $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ are independent observations from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then

1. $\overline{\mathbf{x}}$ and \mathbf{S} are sufficient for $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$;
2. if $\boldsymbol{\mu}$ is given, $\sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}\right)\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}\right)^{\top}$ is sufficient for $\boldsymbol{\Sigma}$;
3. if $\boldsymbol{\Sigma}$ is given, $\overline{\mathbf{x}}$ is sufficient for $\boldsymbol{\mu}$;
where

$$
\overline{\mathbf{x}}=\frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \quad \text { and } \quad \mathbf{S}=\frac{1}{N-1} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top} .
$$

Proof. The density of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ is

$$
\begin{aligned}
& \prod_{\alpha=1}^{N} n\left(\mathbf{x}_{\alpha} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}\right) \\
= & (2 \pi)^{-\frac{p N}{2}}(\operatorname{det}(\boldsymbol{\Sigma}))^{-\frac{N}{2}} \exp \left(-\frac{1}{2} \operatorname{tr}\left(\sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}\right)\right)\right) \\
= & (2 \pi)^{-\frac{p N}{2}}(\operatorname{det}(\boldsymbol{\Sigma}))^{-\frac{N}{2}} \exp \left(-\frac{1}{2} \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}\right)^{\top}\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}\right)\right)\right) \\
= & (2 \pi)^{-\frac{p N}{2}}(\operatorname{det}(\boldsymbol{\Sigma}))^{-\frac{N}{2}} \exp \left(-\frac{1}{2}\left(N(\overline{\mathbf{x}}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\overline{\mathbf{x}}-\boldsymbol{\mu})+(N-1) \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \mathbf{S}\right)\right)\right)
\end{aligned}
$$

where the last step is due to

$$
\sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}\right)
$$

$$
\begin{aligned}
= & \sum_{\alpha=1}^{N}(\overline{\mathbf{x}}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\overline{\mathbf{x}}-\boldsymbol{\mu})+\sum_{\alpha=1}^{N}(\overline{\mathbf{x}}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right) \\
& +\sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top} \boldsymbol{\Sigma}^{-1}(\overline{\mathbf{x}}-\boldsymbol{\mu})+\sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right) \\
= & N(\overline{\mathbf{x}}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\overline{\mathbf{x}}-\boldsymbol{\mu})+(N-1) \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \mathbf{S}\right)
\end{aligned}
$$

Hence, the density is a function of $\mathbf{t}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=\{\overline{\mathbf{x}}, \mathbf{S}\}$ and $\boldsymbol{\theta}=\{\boldsymbol{\mu}, \boldsymbol{\Sigma}\}$. If $\boldsymbol{\mu}$ is given, it is a function of $\mathbf{t}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=\sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}\right)\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}\right)^{\top}$ and $\boldsymbol{\theta}=\boldsymbol{\Sigma}$. If $\boldsymbol{\Sigma}$ is given, it is a function of $\mathbf{t}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=\overline{\mathbf{x}}$ (since \mathbf{S} can be viewed a function of \mathbf{t} for given) and $\boldsymbol{\theta}=\boldsymbol{\mu}$.

Theorem 3.9 (Theorem 3.4.2, Page 84). The sufficient set of statistics $\overline{\mathbf{x}}, \mathbf{S}$ is complete for $\boldsymbol{\mu}, \boldsymbol{\Sigma}$ when the sample is drawn from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

Proof. We introduce $\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}$ by following the proof of Theorem 3.5. For any function $g(\overline{\mathbf{x}}, n \mathbf{S})$, we have

$$
\begin{aligned}
& 0 \equiv \mathbb{E}[g(\overline{\mathbf{x}}, n \mathbf{S})] \\
= & \int \cdots \int K(\operatorname{det}(\boldsymbol{\Sigma}))^{-\frac{N}{2}} g\left(\overline{\mathbf{x}}, \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}\right) \exp \left(-\frac{1}{2}\left(\sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{z}_{\alpha}+N(\overline{\mathbf{x}}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\overline{\mathbf{x}}-\boldsymbol{\mu})\right)\right) \mathrm{d} \mathbf{z}_{1} \ldots \mathrm{~d} \mathbf{z}_{N-1} \mathrm{~d} \overline{\mathbf{x}}
\end{aligned}
$$

for any $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$, where $K=\sqrt{N}(2 \pi)^{-\frac{1}{2} p N}$. Let $\boldsymbol{\Sigma}^{-1}=\mathbf{I}-2 \boldsymbol{\Omega}$ such that symmetric $\boldsymbol{\Omega}$ and $\mathbf{I}-2 \boldsymbol{\Omega} \succ 0$. Let $\boldsymbol{\mu}=(\mathbf{I}-2 \boldsymbol{\Omega})^{-1} \mathbf{t}=\boldsymbol{\Sigma} \mathbf{t}$. Then, we have

$$
\begin{aligned}
0 & \int \cdots \int K(\operatorname{det}(\boldsymbol{\Sigma}))^{-\frac{N}{2}} g\left(\overline{\mathbf{x}}, \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}\right) \\
& \exp \left(-\frac{1}{2}\left(\sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{z}_{\alpha}+N \overline{\mathbf{x}}^{\top} \mathbf{\Sigma}^{-1} \overline{\mathbf{x}}-2 N \boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \overline{\mathbf{x}}+N \boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}\right)\right) \mathrm{d} \mathbf{z}_{1} \ldots \mathrm{~d} \mathbf{z}_{N-1} \mathrm{~d} \overline{\mathbf{x}} \\
= & \int \cdots \int K(\operatorname{det}(\boldsymbol{\Sigma}))^{-\frac{N}{2}} g\left(\overline{\mathbf{x}}, \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}\right) \\
& \exp \left(-\frac{1}{2}\left(\sum_{\alpha=1}^{N-1} \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}\right)+N \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \overline{\mathbf{x}} \overline{\mathbf{x}}^{\top}\right)-2 N \overline{\mathbf{t}}^{\top} \overline{\mathbf{x}}+N \mathbf{t}^{\top} \boldsymbol{\Sigma} \mathbf{t}\right)\right) \mathrm{d} \mathbf{z}_{1} \ldots \mathrm{~d} \mathbf{z}_{N-1} \mathrm{~d} \overline{\mathbf{x}} \\
= & \int \ldots \int K(\operatorname{det}(\mathbf{I}-2 \boldsymbol{\Omega}))^{\frac{N}{2}} g\left(\overline{\mathbf{x}}, \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}\right) \\
& \exp \left(-\frac{1}{2}\left(\operatorname{tr}\left((\mathbf{I}-2 \boldsymbol{\Omega})\left(\sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}+N \overline{\mathbf{x}} \overline{\mathbf{x}}^{\top}\right)\right)-2 N \overline{\mathbf{t}}^{\top} \overline{\mathbf{x}}+N \mathbf{t}^{\top}(\mathbf{I}-2 \boldsymbol{\Omega})^{-1} \mathbf{t}\right)\right) \mathrm{d} \mathbf{z}_{1} \ldots \mathrm{~d} \mathbf{z}_{N-1} \mathrm{~d} \overline{\mathbf{x}} \\
= & (\operatorname{det}(\mathbf{I}-2 \boldsymbol{\Omega}))^{\frac{N}{2}} \exp \left(-\frac{1}{2} N \mathbf{t}^{\top}(\mathbf{I}-2 \boldsymbol{\Omega})^{-1} \mathbf{t}\right) \\
& \int \ldots \int g\left(\overline{\mathbf{x}}, \mathbf{B}-N \overline{\mathbf{x}} \overline{\mathbf{x}}^{\top}\right) \exp \left(\operatorname{tr}(\boldsymbol{\Omega} \mathbf{B})+\mathbf{t}^{\top}(N \overline{\mathbf{x}})\right) n\left(\overline{\mathbf{x}} \mid \mathbf{0}, \frac{1}{N} \mathbf{I}\right) \prod_{\alpha=1}^{N-1} n\left(\mathbf{z}_{\alpha} \mid \mathbf{0}, \mathbf{I}\right) \mathrm{d} \mathbf{z}_{1} \ldots \mathrm{~d} \mathbf{z}_{N-1} \mathrm{~d} \overline{\mathbf{x}} \\
& \left.\int \operatorname{det}(\mathbf{I}-2 \boldsymbol{\Omega})\right)^{\frac{N}{2}} \exp \left(-\frac{1}{2} N \mathbf{t}^{\top}(\mathbf{I}-2 \boldsymbol{\Omega})^{-1} \mathbf{t}\right) \\
& \int g\left(\overline{\mathbf{x}}, \mathbf{B}-N \overline{\mathbf{x}} \overline{\mathbf{x}}^{\top}\right) \exp \left(\operatorname{tr}(\boldsymbol{\Omega} \mathbf{B})+\mathbf{t}^{\top}(N \overline{\mathbf{x}})\right) n\left(\overline{\mathbf{x}} \mid \mathbf{0}, \frac{1}{N} \mathbf{I}\right) \mathrm{d} \overline{\mathbf{x}} \\
= & \operatorname{det}(\mathbf{I}-2 \boldsymbol{\Omega}))^{\frac{N}{2}} \exp \left(-\frac{1}{2} N \mathbf{t}^{\top}(\mathbf{I}-2 \boldsymbol{\Omega})^{-1} \mathbf{t}\right) \mathbb{E}\left[g\left(\overline{\mathbf{x}}, \mathbf{B}-N \overline{\mathbf{x}} \overline{\mathbf{x}}^{\top}\right) \exp \left(\operatorname{tr}(\boldsymbol{\Omega} \mathbf{B})+\mathbf{t}^{\top}(N \overline{\mathbf{x}})\right)\right]
\end{aligned}
$$

where $\mathbf{B}=\sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}+N \overline{\mathbf{x}} \overline{\mathbf{x}}^{\top}$. Thus

$$
\begin{aligned}
0 & \equiv \mathbb{E}\left[g\left(\overline{\mathbf{x}}, \mathbf{B}-N \overline{\mathbf{x}} \overline{\mathbf{x}}^{\top}\right) \exp \left(\operatorname{tr}(\boldsymbol{\Omega} \mathbf{B})+\mathbf{t}^{\top}(N \overline{\mathbf{x}})\right)\right] \\
& =\iint g\left(\overline{\mathbf{x}}, \mathbf{B}-N \overline{\mathbf{x}} \overline{\mathbf{x}}^{\top}\right) \exp \left(\operatorname{tr}(\boldsymbol{\Omega} \mathbf{B})+\mathbf{t}^{\top}(N \overline{\mathbf{x}})\right) h(\overline{\mathbf{x}}, \mathbf{B}) \mathrm{d} \overline{\mathbf{x}} \mathrm{~d} \mathbf{B}
\end{aligned}
$$

where $h(\overline{\mathbf{x}}, \mathbf{B})$ is the joint density of $\overline{\mathbf{x}}$ and \mathbf{B}. Consider that

$$
\iint g\left(\overline{\mathbf{x}}, \mathbf{B}-N \overline{\mathbf{x}} \overline{\mathbf{x}}^{\top}\right) \exp \left(\operatorname{tr}(\boldsymbol{\Omega} \mathbf{B})+\mathbf{t}^{\top}(N \overline{\mathbf{x}})\right) h(\overline{\mathbf{x}}, \mathbf{B}) \mathrm{d} \overline{\mathbf{x}} \mathrm{~d} \mathbf{B}
$$

is the Laplace transform of $g\left(\overline{\mathbf{x}}, \mathbf{B}-N \overline{\mathbf{x}} \overline{\mathbf{x}}^{\top}\right) h(\overline{\mathbf{x}}, \mathbf{B})$. Then we have $g(\overline{\mathbf{x}}, n \mathbf{S}) h(\overline{\mathbf{x}}, \mathbf{B})=0$ almost everywhere. Hence, we have

$$
\begin{aligned}
0 & =\iint|g(\overline{\mathbf{x}}, n \mathbf{S}) h(\overline{\mathbf{x}}, \mathbf{B})| \mathrm{d} \overline{\mathbf{x}} \mathrm{~d} \mathbf{B} \\
& =\iint|g(\overline{\mathbf{x}}, n \mathbf{S})| h(\overline{\mathbf{x}}, \mathbf{B}) \mid \mathrm{d} \overline{\mathbf{x}} \mathrm{~d} \mathbf{B} \\
& =\iint|g(\overline{\mathbf{x}}, n \mathbf{S})| \mathrm{d} m(\overline{\mathbf{x}}, \mathbf{B})
\end{aligned}
$$

Hence, we have $g(\overline{\mathbf{x}}, n \mathbf{S})=0$ almost everywhere.

Cramer-Rao Inequality We first give some lemmas. We denote the density of observation with parameter $\boldsymbol{\theta}$ by $f(\mathbf{x}, \boldsymbol{\theta})$ and

$$
\mathbf{s}=\frac{\partial \ln g(\mathbf{X}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}
$$

where g is the density on N samples and $\mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$.
Lemma 3.3. We have $\mathbb{E}[\mathbf{s}]=\mathbf{0}$.
Proof. We have

$$
\begin{aligned}
\mathbb{E}\left[s_{j}\right] & =\int g(\mathbf{X}, \boldsymbol{\theta}) \frac{\partial \ln g(\mathbf{X}, \boldsymbol{\theta})}{\partial \theta_{j}} \mathrm{~d} \mathbf{X} \\
& =\int g(\mathbf{X}, \boldsymbol{\theta}) \frac{1}{g(\mathbf{X}, \boldsymbol{\theta})} \frac{\partial g(\mathbf{X}, \boldsymbol{\theta})}{\partial \theta_{j}} \mathrm{~d} \mathbf{X} \\
& =\int \frac{\partial g(\mathbf{X}, \boldsymbol{\theta})}{\partial \theta_{j}} \mathrm{~d} \mathbf{X} \\
& =\frac{\partial}{\partial \theta_{j}} \int g(\mathbf{X}, \boldsymbol{\theta}) \mathrm{d} \mathbf{X} \\
& =\frac{\partial}{\partial \theta_{j}} 1=0 .
\end{aligned}
$$

Remark 3.2. Similarly, we also have

$$
\mathbb{E}\left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right]=\mathbf{0}
$$

Lemma 3.4. For unbiased estimator \mathbf{t} of $\boldsymbol{\theta}$, we have $\mathscr{C}[\mathbf{t}, \mathbf{s}]=\mathbf{I}$.

Proof. We have

$$
\begin{aligned}
& \mathscr{C}\left[t_{j}, s_{k}\right] \\
= & \int\left(t_{j}-\theta_{j}\right) \frac{\partial \ln g(\mathbf{X}, \boldsymbol{\theta})}{\partial \theta_{k}} g(\mathbf{X}, \boldsymbol{\theta}) \mathrm{d} \mathbf{X} \\
= & \int\left(t_{j}-\theta_{j}\right) \frac{\partial g(\mathbf{X}, \boldsymbol{\theta})}{\partial \theta_{k}} \mathrm{~d} \mathbf{X} \\
= & -\int g(\mathbf{X}, \boldsymbol{\theta}) \frac{\partial\left(t_{j}-\theta_{j}\right)}{\partial \theta_{k}} \mathrm{~d} \mathbf{X}= \begin{cases}1, & j=k, \\
0, & j \neq k,\end{cases}
\end{aligned}
$$

where the last line holds since

$$
\begin{aligned}
& \int\left(t_{j}-\theta_{j}\right) g(\mathbf{X}, \boldsymbol{\theta}) \mathrm{d} \mathbf{X} \\
= & \int t_{j} g(\mathbf{X}, \boldsymbol{\theta}) \mathrm{d} \mathbf{X}-\theta_{j} \int g(\mathbf{X}, \boldsymbol{\theta}) \mathrm{d} \mathbf{X} \\
= & \mathbb{E} t_{j}-\theta_{j} \\
= & 0
\end{aligned}
$$

and therefore

$$
\begin{aligned}
0 & =\frac{\partial}{\partial \theta_{k}} \int\left(t_{j}-\theta_{j}\right) g(\mathbf{X}, \boldsymbol{\theta}) \mathrm{d} \mathbf{X} \\
& =\int \frac{\partial\left(t_{j}-\theta_{j}\right)}{\partial \theta_{k}} g(\mathbf{X}, \boldsymbol{\theta}) \mathrm{d} \mathbf{X}+\int\left(t_{j}-\theta_{j}\right) \frac{\partial g(\mathbf{X}, \boldsymbol{\theta})}{\partial \theta_{k}} .
\end{aligned}
$$

Theorem 3.10. Under the regularity condition (everything is well-defined, integration and differentiation can be swapped), we have

$$
N \mathbb{E}\left[(\mathbf{t}-\boldsymbol{\theta})(\mathbf{t}-\boldsymbol{\theta})^{\top}\right] \succeq\left(\mathbb{E}\left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\left(\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right)^{\top}\right]\right)^{-1}
$$

where $\mathbb{E}[\mathbf{t}]=\boldsymbol{\theta}$ and $f(\mathbf{x}, \boldsymbol{\theta})$ is the density of the distribution with respect to the components of $\boldsymbol{\theta}$.
Proof. For any nonzero $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{p}$, consider the correlation of $\mathbf{a}^{\top} \mathbf{t}$ and $\mathbf{b}^{\top} \mathbf{s}$, we have

$$
1 \geq \frac{\mathscr{C}\left[\mathbf{a}^{\top} \mathbf{t}, \mathbf{b}^{\top} \mathbf{s}\right]}{\sqrt{\operatorname{Var}\left[\mathbf{a}^{\top} \mathbf{t}\right] \operatorname{Var}\left[\mathbf{b}^{\top} \mathbf{s}\right]}}=\frac{\mathbf{a}^{\top} \mathscr{C}[\mathbf{t}, \mathbf{s}] \mathbf{b}}{\sqrt{\mathbf{a}^{\top} \mathscr{C}[\mathbf{t}] \mathbf{a}} \sqrt{\mathbf{b}^{\top} \mathscr{C}[\mathbf{s}] \mathbf{b}}}=\frac{\mathbf{a}^{\top} \mathbf{b}}{\sqrt{\mathbf{a}^{\top} \mathscr{C}[\mathbf{t}] \mathbf{a}} \sqrt{\mathbf{b}^{\top} \mathscr{C}[\mathbf{s}] \mathbf{b}}}
$$

Let $\mathbf{b}=(\mathscr{C}[\mathbf{s}])^{-1} \mathbf{a}$, we have

$$
1 \geq \frac{\mathbf{a}^{\top}(\mathscr{C}[\mathbf{s}])^{-1} \mathbf{a}}{\sqrt{\mathbf{a}^{\top} \mathscr{C}[\mathbf{t}] \mathbf{a}} \sqrt{\mathbf{a}^{\top}(\mathscr{C}[\mathbf{s}])^{-1} \mathbf{a}}}
$$

which means

$$
\mathbf{a}^{\top} \mathscr{C}[\mathbf{t}] \mathbf{a} \geq \mathbf{a}^{\top}(\mathscr{C}[\mathbf{s}])^{-1} \mathbf{a}
$$

for any nonzero a. Hence, we have

$$
\begin{aligned}
& \mathbb{E}\left[(\mathbf{t}-\boldsymbol{\theta})(\mathbf{t}-\boldsymbol{\theta})^{\top}\right]=\mathscr{C}[\mathbf{t}] \succeq(\mathscr{C}[\mathbf{s}])^{-1} \\
= & \left(\mathscr{C}\left[\frac{\partial \ln g(\mathbf{X}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right]\right)^{-1}=\left(N \mathscr{C}\left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right]\right)^{-1}=\frac{1}{N}\left(\mathscr{C}\left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right]\right)^{-1} \\
= & \frac{1}{N}\left(\mathbb{E}\left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\left(\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right)^{\top}\right]\right)^{-1} .
\end{aligned}
$$

Theorem 3.11. Let p-component vectors $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots$ be i.i.d with means $\mathbb{E}\left[\mathbf{y}_{\alpha}\right]=\boldsymbol{\nu}$ and covariance matrices $\mathbb{E}\left[\left(\mathbf{y}_{\alpha}-\boldsymbol{\nu}\right)\left(\mathbf{y}_{\alpha}-\boldsymbol{\nu}\right)^{\top}\right]=\mathbf{T}$. Then the limiting distribution of

$$
\frac{1}{\sqrt{n}} \sum_{\alpha=1}^{n}\left(\mathbf{y}_{\alpha}-\boldsymbol{\nu}\right)
$$

as $n \rightarrow+\infty$ is $\mathcal{N}(\mathbf{0}, \mathbf{T})$.
Proof. Let

$$
\phi_{n}(\mathbf{t}, u)=\mathbb{E}\left[\exp \left(\mathrm{i} u \mathbf{t}^{\top} \frac{1}{\sqrt{n}} \sum_{\alpha=1}^{n}\left(\mathbf{y}_{\alpha}-\boldsymbol{\nu}\right)\right)\right]
$$

where $u \in \mathbb{R}$ and $\mathbf{t} \in \mathbb{R}^{p}$. For fixed \mathbf{t}, the function $\phi_{n}(\mathbf{t}, u)$ can be viewed as the characteristic function of

$$
\frac{1}{\sqrt{n}} \sum_{\alpha=1}^{n}\left(\mathbf{t}^{\top} \mathbf{y}_{\alpha}-\mathbf{t}^{\top} \mathbb{E}\left[\mathbf{y}_{\alpha}\right]\right)
$$

By the univariate central limit theorem, the limiting distribution is $\mathcal{N}\left(0, \mathbf{t}^{\top} \mathbf{T} \mathbf{t}\right)$. Therefore, we have

$$
\lim _{n \rightarrow \infty} \phi_{n}(\mathbf{t}, u)=\exp \left(-\frac{1}{2} u^{2} \mathbf{t}^{\top} \mathbf{T} \mathbf{t}\right)
$$

for any $u \in \mathbb{R}$ and $\mathbf{t} \in \mathbb{R}^{p}$. Let $u=1$, we obtain

$$
\phi_{n}(\mathbf{t}, 1)=\mathbb{E}\left[\exp \left(\mathrm{i} \mathbf{t}^{\top} \frac{1}{\sqrt{n}} \sum_{\alpha=1}^{n}\left(\mathbf{y}_{\alpha}-\boldsymbol{\nu}\right)\right)\right] \rightarrow \exp \left(-\frac{1}{2} \mathbf{t}^{\top} \mathbf{T} \mathbf{t}\right)
$$

for any $\mathbf{t} \in \mathbb{R}^{p}$. Since $\exp \left(-\frac{1}{2} \mathbf{t}^{\top} \mathbf{T} \mathbf{t}\right)$ is continuous at $\mathbf{t}=\mathbf{0}$, the convergence is uniform in some neighborhood of $\mathbf{t}=\mathbf{0}$. The theorem follows.

Theorem 3.12. If $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ are independently distributed, each x_{α} according to $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, and if $\boldsymbol{\mu}$ has an a prior distribution $\mathcal{N}(\boldsymbol{\nu}, \mathbf{\Phi})$, then the a posterior distribution of $\boldsymbol{\mu}$ given $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ is normal with mean

$$
\boldsymbol{\Phi}\left(\boldsymbol{\Phi}+\frac{1}{N} \boldsymbol{\Sigma}\right)^{-1} \overline{\mathbf{x}}+\frac{1}{N} \boldsymbol{\Sigma}\left(\boldsymbol{\Phi}+\frac{1}{N} \boldsymbol{\Sigma}\right)^{-1} \boldsymbol{\nu}
$$

and covariance matrix

$$
\boldsymbol{\Phi}-\boldsymbol{\Phi}\left(\boldsymbol{\Phi}+\frac{1}{N} \boldsymbol{\Sigma}\right)^{-1} \boldsymbol{\Phi}
$$

Proof. Since $\overline{\mathbf{x}}$ is sufficient for $\boldsymbol{\mu}$, we need only consider $\overline{\mathbf{x}}$, which has the distribution of $\boldsymbol{\mu}+\mathbf{y}$, where

$$
\mathbf{y} \sim \mathcal{N}\left(\mathbf{0}, \frac{1}{N} \boldsymbol{\Sigma}\right)
$$

and is independent of $\boldsymbol{\mu}$. Then we have

$$
\overline{\mathbf{x}}=\left[\begin{array}{ll}
\mathbf{I} & \mathbf{I}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{\mu} \\
\mathbf{y}
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{l}
\boldsymbol{\mu} \\
\mathbf{y}
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}
\boldsymbol{\nu} \\
\mathbf{0}
\end{array}\right],\left[\begin{array}{cc}
\mathbf{\Phi} & \mathbf{0} \\
\mathbf{0} & \frac{1}{N} \boldsymbol{\Sigma}
\end{array}\right]\right)
$$

which implies $\overline{\mathbf{x}} \sim \mathcal{N}\left(\boldsymbol{\nu}, \boldsymbol{\Phi}+\frac{1}{N} \boldsymbol{\Sigma}\right)$. Since we have

$$
\left[\begin{array}{c}
\boldsymbol{\mu} \\
\overline{\mathbf{x}}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0} \\
\mathbf{I} & \mathbf{I}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{\mu} \\
\mathbf{y}
\end{array}\right],
$$

then

$$
\left[\begin{array}{c}
\boldsymbol{\mu} \\
\overline{\mathbf{x}}
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}
\boldsymbol{\nu} \\
\boldsymbol{\nu}
\end{array}\right],\left[\begin{array}{cc}
\boldsymbol{\Phi} & \boldsymbol{\Phi} \\
\boldsymbol{\Phi} & \boldsymbol{\Phi}+\frac{1}{N} \boldsymbol{\Sigma}
\end{array}\right]\right)
$$

Consider the conditional distribution of $\boldsymbol{\mu}$ given $\overline{\mathbf{x}}$, we obtain the mean and covariance given $\overline{\mathbf{x}}$ is

$$
\begin{aligned}
& \boldsymbol{\nu}+\boldsymbol{\Phi}\left(\boldsymbol{\Phi}+\frac{1}{N} \boldsymbol{\Sigma}\right)^{-1}(\overline{\mathbf{x}}-\boldsymbol{\nu}) \\
= & \boldsymbol{\Phi}\left(\boldsymbol{\Phi}+\frac{1}{N} \boldsymbol{\Sigma}\right)^{-1} \overline{\mathbf{x}}+\left(\mathbf{I}-\boldsymbol{\Phi}\left(\boldsymbol{\Phi}+\frac{1}{N} \boldsymbol{\Sigma}\right)^{-1}\right) \boldsymbol{\nu} \\
= & \boldsymbol{\Phi}\left(\boldsymbol{\Phi}+\frac{1}{N} \boldsymbol{\Sigma}\right)^{-1} \overline{\mathbf{x}}+\frac{1}{N} \boldsymbol{\Sigma}\left(\boldsymbol{\Phi}+\frac{1}{N} \boldsymbol{\Sigma}\right)^{-1} \boldsymbol{\nu} .
\end{aligned}
$$

Remark 3.3. Let

$$
\mathbf{x}=\left[\begin{array}{l}
\mathbf{x}^{(1)} \\
\mathbf{x}^{(2)}
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}
\boldsymbol{\mu}^{(1)} \\
\boldsymbol{\mu}^{(2)}
\end{array}\right],\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right]\right)
$$

The conditional density of $\mathbf{x}^{(1)}$ given that $\mathbf{x}^{(2)}$ is

$$
\mathbf{x}^{(1)} \mid \mathbf{x}^{(2)} \sim \mathcal{N}\left(\boldsymbol{\mu}^{(1)}+\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}\left(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}\right), \boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{22}\right)
$$

Lemma 3.5. If $f(x)$ is a function such that

$$
f(b)-f(a)=\int_{a}^{b} f^{\prime}(x) \mathrm{d} x
$$

for all $a<b$ and if

$$
\int_{-\infty}^{+\infty}\left|f^{\prime}(x)\right| \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(x-\theta)^{2}\right) \mathrm{d} x<+\infty
$$

then

$$
\begin{equation*}
\int_{-\infty}^{+\infty} f(x)(x-\theta) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(x-\theta)^{2}\right) \mathrm{d} x=\int_{-\infty}^{+\infty} f^{\prime}(x) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(x-\theta)^{2}\right) \mathrm{d} x \tag{5}
\end{equation*}
$$

Proof. Since $(x-\theta) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(x-\theta)^{2}\right)$ is odd function, the LHS of (5) can be written as

$$
\begin{aligned}
& \int_{-\infty}^{+\infty}(f(x)-f(\theta))(x-\theta) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(x-\theta)^{2}\right) \mathrm{d} x \\
= & \int_{\theta}^{+\infty}(f(x)-f(\theta))(x-\theta) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(x-\theta)^{2}\right) \mathrm{d} x \\
& +\int_{-\infty}^{\theta}(f(x)-f(\theta))(x-\theta) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(x-\theta)^{2}\right) \mathrm{d} x \\
= & \int_{\theta}^{+\infty} \int_{\theta}^{x} f^{\prime}(y)(x-\theta) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(x-\theta)^{2}\right) \mathrm{d} y \mathrm{~d} x \\
& -\int_{-\infty}^{\theta} \int_{x}^{\theta} f^{\prime}(y)(x-\theta) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(x-\theta)^{2}\right) \mathrm{d} y \mathrm{~d} x \\
= & \int_{\theta}^{+\infty} \int_{y}^{+\infty} f^{\prime}(y)(x-\theta) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(x-\theta)^{2}\right) \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

$$
\begin{aligned}
& -\int_{-\infty}^{\theta} \int_{-\infty}^{y} f^{\prime}(y)(x-\theta) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(x-\theta)^{2}\right) \mathrm{d} x \mathrm{~d} y \\
= & \int_{\theta}^{+\infty} f^{\prime}(y) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(y-\theta)^{2}\right) \mathrm{d} y-\int_{-\infty}^{\theta} f^{\prime}(y) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(y-\theta)^{2}\right) \mathrm{d} y \\
= & \int_{-\infty}^{+\infty} f^{\prime}(x) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(x-\theta)^{2}\right) \mathrm{d} x
\end{aligned}
$$

where we use

$$
\begin{aligned}
& \int(x-\theta) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(x-\theta)^{2}\right) \mathrm{d} x \\
= & \frac{1}{\sqrt{2 \pi}} \int \exp \left(-\frac{1}{2}(x-\theta)^{2}\right) \mathrm{d}\left(\frac{1}{2}(x-\theta)^{2}\right) \\
= & \frac{-1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(x-\theta)^{2}\right)
\end{aligned}
$$

and

$$
\lim _{x \rightarrow+\infty} \frac{-1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(x-\theta)^{2}\right)=\lim _{x \rightarrow-\infty} \frac{-1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(x-\theta)^{2}\right)=0
$$

Lemma 3.6. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ are independently distributed to $\mathcal{N}_{p}(\boldsymbol{\mu}, N \mathbf{I})$, we have

$$
\mathbb{E}\left[\|\overline{\mathbf{x}}-\boldsymbol{\mu}\|_{2}^{2}\right]=\sum_{\alpha=1}^{p} \operatorname{Var}\left(\bar{x}_{\alpha}\right)=p
$$

Proof. We have

$$
\begin{aligned}
& \mathbb{E}\left[\|\overline{\mathbf{x}}-\boldsymbol{\mu}\|_{2}^{2}\right] \\
= & \mathbb{E}\left[\operatorname{tr}\left((\overline{\mathbf{x}}-\boldsymbol{\mu})^{\top}(\overline{\mathbf{x}}-\boldsymbol{\mu})\right)\right] \\
= & \mathbb{E}\left[\operatorname{tr}\left((\overline{\mathbf{x}}-\boldsymbol{\mu})(\overline{\mathbf{x}}-\boldsymbol{\mu})^{\top}\right)\right] \\
= & \operatorname{tr}\left(\mathbb{E}\left[(\overline{\mathbf{x}}-\boldsymbol{\mu})(\overline{\mathbf{x}}-\boldsymbol{\mu})^{\top}\right]\right) \\
= & \operatorname{tr}(\mathbf{I})=p .
\end{aligned}
$$

Theorem 3.13. Under the setting of Lemma 3.6, we let

$$
\mathbf{m}(\overline{\mathbf{x}})=\left(1-\frac{p-2}{\|\overline{\mathbf{x}}-\boldsymbol{\nu}\|_{2}^{2}}\right)(\overline{\mathbf{x}}-\boldsymbol{\nu})+\boldsymbol{\nu}
$$

and $p>3$. Then $\mathbb{E}\left[\|\mathbf{m}(\overline{\mathbf{x}})-\boldsymbol{\mu}\|_{2}^{2}\right]<\mathbb{E}\left[\|\overline{\mathbf{x}}-\boldsymbol{\mu}\|_{2}^{2}\right]$.
Proof. We have

$$
\begin{aligned}
\Delta R(\boldsymbol{\mu}) & =\mathbb{E}\left[\|\overline{\mathbf{x}}-\boldsymbol{\mu}\|_{2}^{2}-\|\mathbf{m}(\overline{\mathbf{x}})-\boldsymbol{\mu}\|_{2}^{2}\right] \\
& =\mathbb{E}\left[\|\overline{\mathbf{x}}-\boldsymbol{\mu}\|_{2}^{2}-\left\|\left(1-\frac{p-2}{\|\overline{\mathbf{x}}-\boldsymbol{\nu}\|_{2}^{2}}\right)(\overline{\mathbf{x}}-\boldsymbol{\nu})+\boldsymbol{\nu}-\boldsymbol{\mu}\right\|_{2}^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\mathbb{E}\left[\sum_{i=1}^{p}\left(\bar{x}_{i}-\mu_{i}\right)^{2}-\sum_{i=1}^{p}\left(\left(1-\frac{p-2}{\|\overline{\mathbf{x}}-\boldsymbol{\nu}\|_{2}^{2}}\right)\left(\bar{x}_{i}-\nu_{i}\right)+\nu_{i}-\mu_{i}\right)^{2}\right] \\
& =\mathbb{E}\left[\sum_{i=1}^{p}\left(\bar{x}_{i}-\mu_{i}\right)^{2}-\sum_{i=1}^{p}\left(\bar{x}_{i}-\mu_{i}-\frac{p-2}{\|\overline{\mathbf{x}}-\boldsymbol{\nu}\|_{2}^{2}}\left(\bar{x}_{i}-\nu_{i}\right)\right)^{2}\right] \\
& =\mathbb{E}\left[\frac{2(p-2)}{\|\overline{\mathbf{x}}-\boldsymbol{\nu}\|_{2}^{2}} \sum_{i=1}^{p}\left(\bar{x}_{i}-\nu_{i}\right)\left(\bar{x}_{i}-\mu_{i}\right)-\sum_{i=1}^{p} \frac{(p-2)^{2}\left(\bar{x}_{i}-\nu_{i}\right)^{2}}{\|\overline{\mathbf{x}}-\boldsymbol{\nu}\|_{2}^{4}}\right] \\
& =\mathbb{E}\left[2(p-2) \sum_{i=1}^{p} \frac{\bar{x}_{i}-\nu_{i}}{\|\overline{\mathbf{x}}-\boldsymbol{\nu}\|_{2}^{2}} \cdot\left(\bar{x}_{i}-\mu_{i}\right)-\frac{(p-2)^{2}}{\|\overline{\mathbf{x}}-\boldsymbol{\nu}\|_{2}^{2}}\right] .
\end{aligned}
$$

Using Lemma 3.5 with $\theta=\mu_{i}$,

$$
f\left(\bar{x}_{i}\right)=\frac{\bar{x}_{i}-\nu_{i}}{\|\overline{\mathbf{x}}-\boldsymbol{\nu}\|_{2}^{2}} \quad \text { and } \quad f^{\prime}\left(\bar{x}_{i}\right)=\frac{1}{\|\overline{\mathbf{x}}-\boldsymbol{\nu}\|_{2}^{2}}-\frac{2\left(\bar{x}_{i}-\nu_{i}\right)^{2}}{\|\overline{\mathbf{x}}-\boldsymbol{\nu}\|_{2}^{4}}
$$

Hence, we obtain

$$
\begin{aligned}
\Delta R(\boldsymbol{\mu}) & =\mathbb{E}\left[2(p-2) \sum_{i=1}^{p}\left(\frac{1}{\|\overline{\mathbf{x}}-\boldsymbol{\nu}\|_{2}^{2}}-\frac{2\left(\bar{x}_{i}-\nu_{i}\right)^{2}}{\|\overline{\mathbf{x}}-\boldsymbol{\nu}\|_{2}^{4}}\right)-\frac{(p-2)^{2}}{\|\overline{\mathbf{x}}-\boldsymbol{\nu}\|_{2}^{2}}\right] \\
& =\mathbb{E}\left[2(p-2) \sum_{i=1}^{p}\left(\frac{1}{\|\overline{\mathbf{x}}-\boldsymbol{\nu}\|_{2}^{2}}-\frac{2\left(\bar{x}_{i}-\nu_{i}\right)^{2}}{\|\overline{\mathbf{x}}-\boldsymbol{\nu}\|_{2}^{4}}\right)-\frac{(p-2)^{2}}{\|\overline{\mathbf{x}}-\boldsymbol{\nu}\|_{2}^{2}}\right] \\
& =\mathbb{E}\left[\frac{2 p(p-2)}{\|\overline{\mathbf{x}}-\boldsymbol{\nu}\|_{2}^{2}}-\frac{4(p-2)}{\|\overline{\mathbf{x}}-\boldsymbol{\nu}\|_{2}^{2}}-\frac{(p-2)^{2}}{\|\overline{\mathbf{x}}-\boldsymbol{\nu}\|_{2}^{2}}\right] \\
& =\mathbb{E}\left[\frac{(p-2)^{2}}{\|\overline{\mathbf{x}}-\boldsymbol{\nu}\|_{2}^{2}}\right]>0
\end{aligned}
$$

Remark 3.4. We consider the bias and variance decomposition

$$
\begin{aligned}
& \mathbb{E}\|\mathbf{m}(\overline{\mathbf{x}})-\boldsymbol{\mu}\|_{2}^{2} \\
= & \mathbb{E}\|\mathbf{m}(\overline{\mathbf{x}})-\mathbb{E}[\mathbf{m}(\overline{\mathbf{x}})]+\mathbb{E}[\mathbf{m}(\overline{\mathbf{x}})]-\boldsymbol{\mu}\|_{2}^{2} \\
= & \mathbb{E}\|\mathbf{m}(\overline{\mathbf{x}})-\mathbb{E}[\mathbf{m}(\overline{\mathbf{x}})]\|_{2}^{2}+2 \mathbb{E}\left[(\mathbf{m}(\overline{\mathbf{x}})-\mathbb{E}[\mathbf{m}(\overline{\mathbf{x}})])^{\top}(\mathbb{E}[\mathbf{m}(\overline{\mathbf{x}})]-\boldsymbol{\mu})\right]+\mathbb{E}\|\mathbb{E}[\mathbf{m}(\overline{\mathbf{x}})]-\boldsymbol{\mu}\|_{2}^{2} \\
= & \mathbb{E}\|\mathbf{m}(\overline{\mathbf{x}})-\mathbb{E}[\mathbf{m}(\overline{\mathbf{x}})]\|_{2}^{2}+\|\mathbb{E}[\mathbf{m}(\overline{\mathbf{x}})]-\boldsymbol{\mu}\|_{2}^{2} .
\end{aligned}
$$

Unbiased estimator may leads to larger variance.
Lemma 3.7. Suppose that $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{I})$, then

$$
\mathbb{E}\left\|g^{+}\left(\|\mathbf{x}\|_{2}\right) \mathbf{x}-\boldsymbol{\mu}\right\|_{2}^{2} \leq \mathbb{E}\left\|g\left(\|\mathbf{x}\|_{2}\right) \mathbf{x}-\boldsymbol{\mu}\right\|_{2}^{2}
$$

where

$$
g^{+}(u)= \begin{cases}g(u), & \text { if } g(u) \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

for any function $g(u)$.

Proof. We have

$$
\begin{aligned}
& \mathbb{E}\left\|g\left(\|\mathbf{x}\|_{2}\right) \mathbf{x}-\boldsymbol{\mu}\right\|_{2}^{2}-\mathbb{E}\left\|g^{+}\left(\|\mathbf{x}\|_{2}\right) \mathbf{x}-\boldsymbol{\mu}\right\|_{2}^{2} \\
= & \mathbb{E}\left[\left(g\left(\|\mathbf{x}\|_{2}\right)\right)^{2}\|\mathbf{x}\|_{2}^{2}\right]-\mathbb{E}\left[\left(g^{+}\left(\|\mathbf{x}\|_{2}\right)\right)^{2}\|\mathbf{x}\|^{2}\right]+2 \mathbb{E}\left[\boldsymbol{\mu}^{\top} \mathbf{x}\left(g^{+}\left(\|\mathbf{x}\|_{2}\right)-g\left(\|\mathbf{x}\|_{2}\right)\right)\right] \\
\geq & 2 \mathbb{E}\left[\boldsymbol{\mu}^{\top} \mathbf{x}\left(g^{+}\left(\|\mathbf{x}\|_{2}\right)-g\left(\|\mathbf{x}\|_{2}\right)\right)\right]
\end{aligned}
$$

Let \mathbf{P} be the orthogonal matrix such that $\mathbf{P P}^{\top}=\mathbf{I}$ and

$$
\mathbf{P}=\left[\frac{\boldsymbol{\mu}}{\|\boldsymbol{\mu}\|_{2}}, \times, \ldots, \times\right]
$$

which means

$$
\mathbf{P}^{\top} \boldsymbol{\mu}=\left[\|\boldsymbol{\mu}\|_{2}, 0, \ldots, 0\right]^{\top} .
$$

Let $\mathbf{y}=\mathbf{P}^{\top} \mathbf{x}$, then we have $\boldsymbol{\mu}^{\top} \mathbf{x}=\boldsymbol{\mu}^{\top} \mathbf{P} \mathbf{y}=\left(\mathbf{P}^{\top} \boldsymbol{\mu}\right)^{\top} \mathbf{y}=\|\boldsymbol{\mu}\|_{2} y_{1}$ and

$$
\begin{aligned}
& \mathbb{E}\left[\boldsymbol{\mu}^{\top} \mathbf{x}\left(g^{+}\left(\|\mathbf{x}\|_{2}\right)-g\left(\|\mathbf{x}\|_{2}\right)\right)\right] \\
= & \mathbb{E}\left[\|\boldsymbol{\mu}\|_{2} y_{1}\left(g^{+}\left(\|\mathbf{y}\|_{2}\right)-g\left(\|\mathbf{y}\|_{2}\right)\right)\right] \\
= & \|\boldsymbol{\mu}\|_{2} \int_{-\infty}^{+\infty} y_{1}\left(g^{+}\left(\|\mathbf{y}\|_{2}\right)-g\left(\|\mathbf{y}\|_{2}\right)\right) \frac{1}{(2 \pi)^{\frac{p}{2}}} \exp \left(-\frac{1}{2}\left(\sum_{i=1}^{p} y_{i}^{2}-2 y_{1}\|\boldsymbol{\mu}\|_{2}+\|\boldsymbol{\mu}\|_{2}^{2}\right)\right) \mathrm{d} \mathbf{y} \\
= & \frac{\|\boldsymbol{\mu}\|_{2} \exp \left(-\frac{1}{2}\|\boldsymbol{\mu}\|_{2}^{2}\right)}{(2 \pi)^{\frac{p}{2}}} \int_{-\infty}^{+\infty} y_{1}\left(g^{+}\left(\|\mathbf{y}\|_{2}\right)-g\left(\|\mathbf{y}\|_{2}\right)\right) \exp \left(-\frac{1}{2} \sum_{i=1}^{p} y_{i}^{2}\right) \exp \left(y_{1}\|\boldsymbol{\mu}\|_{2}\right) \mathrm{d} \mathbf{y} \\
= & \frac{\|\boldsymbol{\mu}\|_{2} \exp \left(-\frac{1}{2}\|\boldsymbol{\mu}\|_{2}^{2}\right)}{(2 \pi)^{\frac{p}{2}}} \\
& \cdot \int_{-\infty}^{+\infty} \cdots \int_{0}^{+\infty} y_{1}\left(g^{+}\left(\|\mathbf{y}\|_{2}\right)-g\left(\|\mathbf{y}\|_{2}\right)\right) \exp \left(-\frac{1}{2} \sum_{i=1}^{p} y_{i}^{2}\right)\left(\exp \left(y_{1}\|\boldsymbol{\mu}\|_{2}\right)-\exp \left(-y_{1}\|\boldsymbol{\mu}\|_{2}\right)\right) \mathrm{d} y_{1} \ldots \mathrm{~d} y_{p},
\end{aligned}
$$

where the last step use $\exp (z)-\exp (-z) \geq 0$ for all $z \geq 0$.
Theorem 3.14. Let

$$
\mathbf{m}(\overline{\mathbf{x}})=\left(1-\frac{p-2}{\|\overline{\mathbf{x}}-\boldsymbol{\nu}\|_{2}^{2}}\right)(\overline{\mathbf{x}}-\boldsymbol{\nu})+\boldsymbol{\nu} \quad \text { and } \quad \tilde{\mathbf{m}}(\overline{\mathbf{x}})=\left(1-\frac{p-2}{\|\overline{\mathbf{x}}-\boldsymbol{\nu}\|_{2}^{2}}\right)^{+}(\overline{\mathbf{x}}-\boldsymbol{\nu})+\boldsymbol{\nu}
$$

where $\overline{\mathbf{x}} \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{I})$. Then we have $\mathbb{E}\|\tilde{\mathbf{m}}(\overline{\mathbf{x}})-\boldsymbol{\mu}\|_{2}^{2} \leq \mathbb{E}\|\mathbf{m}(\overline{\mathbf{x}})-\boldsymbol{\mu}\|_{2}^{2}$.
Proof. Use Lemma 3.7 with $g(u)=1-(p-2) / u, \mathbf{x}=\overline{\mathbf{x}}-\boldsymbol{\nu}$ and replace $\boldsymbol{\mu}$ by $\boldsymbol{\mu}-\boldsymbol{\nu}$.

$4 \quad T^{2}$-Statistic

Theorem 4.1. For $y \sim \chi^{2}(n)$, we have $\mathbb{E}[y]=n$ and $\operatorname{Var}[y]=2 n$.
Proof. We can write

$$
y=\sum_{i=1}^{n} x_{i}^{2}
$$

where x_{1}, \ldots, x_{n} are independent standard normal variables. Then, we have

$$
\mathbb{E}[y]=\mathbb{E}\left[\sum_{i=1}^{n} x_{i}^{2}\right]=\sum_{i=1}^{n} \mathbb{E}\left[x_{i}^{2}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[x_{i}\right]=n
$$

and

$$
\operatorname{Var}[y]=\operatorname{Var}\left[\sum_{i=1}^{n} x_{i}^{2}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[x_{i}^{2}\right]=\sum_{i=1}^{n} \mathbb{E}\left[x_{i}^{4}-\left(\mathbb{E}\left[x_{i}^{2}\right]\right)^{2}\right]=\sum_{i=1}^{n} \mathbb{E}[3-1]=2 n
$$

We use the fact $\mathbb{E}\left[x_{i}^{4}\right]=3$ because of $\phi(t)=\exp \left(-\frac{1}{2} t^{2}\right)$ and

$$
\mathbb{E}\left[x_{i}^{4}\right]=\left.\frac{1}{\mathrm{i}^{4}} \frac{\mathrm{~d}^{4} \phi(t)}{\mathrm{d} t^{4}}\right|_{t=0}=\left.\left(t^{4}-6 t^{2}+3\right) \exp \left(-\frac{1}{2} t^{2}\right)\right|_{t=0}=3
$$

Theorem 4.2. The density of $y \sim \chi^{2}(n)$ is

$$
f(y ; n)= \begin{cases}\frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} y^{\frac{n}{2}-1} \exp \left(-\frac{y}{2}\right), & y>0 \\ 0, & \text { otherwise }\end{cases}
$$

where

$$
\Gamma(\alpha)=\int_{0}^{\infty} t^{\alpha-1} \exp (-t) \mathrm{d} t
$$

Proof. We first provide the following results:

1. We have $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$, because

$$
\begin{aligned}
\Gamma\left(\frac{1}{2}\right) & =\int_{0}^{\infty} t^{-1 / 2} \exp (-t) \mathrm{d} t \\
& =\int_{0}^{\infty}\left(\frac{1}{2} x^{2}\right)^{-1 / 2} \exp \left(-\frac{1}{2} x^{2}\right) \mathrm{d}\left(\frac{1}{2} x^{2}\right) \\
& =\int_{0}^{\infty} \frac{\sqrt{2}}{x} \exp \left(-\frac{1}{2} x^{2}\right) x \mathrm{~d} x \\
& =\sqrt{2} \int_{0}^{\infty} \exp \left(-\frac{1}{2} x^{2}\right) \mathrm{d} x \\
& =2 \sqrt{\pi} \int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} x^{2}\right) \mathrm{d} x \\
& =\sqrt{\pi}
\end{aligned}
$$

2. For $y_{1}=x^{2}$ with $x \sim \mathcal{N}(0,1)$, the density function of y_{1} is

$$
\frac{1}{\sqrt{2 \pi y_{1}}} \exp \left(-\frac{1}{2} y_{1}\right)
$$

We define the positive random variable \hat{x} whose density function is

$$
\frac{2}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} \hat{x}^{2}\right) .
$$

Then the transform $\hat{x}=\sqrt{y_{1}}$ is one to one and the density of y_{1} is

$$
\frac{2}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} y_{1}\right) \frac{\mathrm{d} \sqrt{y_{1}}}{\mathrm{~d} y_{1}}=\frac{1}{\sqrt{2 \pi y_{1}}} \exp \left(-\frac{1}{2} y_{1}\right) .
$$

3. For beta function

$$
B(\alpha, \beta)=\int_{0}^{1} t^{\alpha-1}(1-t)^{\beta-1} \mathrm{~d} t
$$

we have

$$
B(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}
$$

Consider that

$$
\begin{aligned}
& \Gamma(\alpha) \Gamma(\beta) \\
= & \int_{0}^{\infty} x^{\alpha-1} \exp (-x) \mathrm{d} x \int_{0}^{\infty} y^{\beta-1} \exp (-y) \mathrm{d} y \\
= & \int_{0}^{\infty} \int_{0}^{\infty} x^{\alpha-1} y^{\beta-1} \exp (-(x+y)) \mathrm{d} y \mathrm{~d} x
\end{aligned}
$$

Using the substitution $x=u v$ and $y=u(1-v)$, then the Jacobian matrix of the transformation is

$$
\mathbf{J}=\left[\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right]=\left[\begin{array}{cc}
v & u \\
1-v & -u
\end{array}\right]
$$

and $\operatorname{det}(\mathbf{J})=-u$. Since $u=x+y$ and $v=x /(x+y)$, we have that the limits of integration for u are 0 to ∞ and the limits of integration for v are 0 to 1 . Thus

$$
\begin{aligned}
\Gamma(\alpha) \Gamma(\beta) & =\int_{0}^{\infty} \int_{0}^{\infty} x^{\alpha-1} y^{\beta-1} \exp (-(x+y)) \mathrm{d} y \mathrm{~d} x \\
& =\int_{0}^{1} \int_{0}^{\infty}(u v)^{\alpha-1}(u(1-v))^{\beta-1} \exp (-(u v+u(1-v)))|-u| \mathrm{d} u \mathrm{~d} v \\
& =\int_{0}^{1} \int_{0}^{\infty} u^{\alpha+\beta-1} v^{\alpha-1}(1-v)^{\beta-1} \exp (-u) \mathrm{d} u \mathrm{~d} v \\
& =\int_{0}^{1} v^{\alpha-1}(1-v)^{\beta-1} \mathrm{~d} v \int_{0}^{\infty} u^{\alpha+\beta-1} \exp (-u) \mathrm{d} u \\
& =B(\alpha, \beta) \Gamma(\alpha+\beta)
\end{aligned}
$$

4. If

$$
F(z)=\int_{a(z)}^{b(z)} f(y, z) \mathrm{d} y
$$

then

$$
F^{\prime}(z)=\int_{a(z)}^{b(z)} \frac{\partial f(y, z)}{\partial z} \mathrm{~d} x+f(b(z), z) b^{\prime}(z)-f(a(z), z) a^{\prime}(z) .
$$

We prove the density of Chi-square distribution by induction. For $n=1$ and $y>0$, we have

$$
f(y ; 1)=\frac{1}{\sqrt{2 \pi y}} \exp \left(-\frac{1}{2} y\right)=\frac{1}{2^{\frac{1}{2}} \Gamma\left(\frac{1}{2}\right)} y^{\frac{1}{2}-1} \exp \left(-\frac{y}{2}\right)
$$

Suppose the statement holds for $n-1$, that is

$$
f(y ; n-1)= \begin{cases}\frac{1}{2^{\frac{n-1}{2}} \Gamma\left(\frac{n-1}{2}\right)} y^{\frac{n-1}{2}-1} \exp \left(-\frac{y}{2}\right), & y>0 \\ 0, & \text { otherwise }\end{cases}
$$

We consider $y_{n}=y_{n-1}+x_{n}^{2}$ such that $y_{n-1} \sim \chi^{2}(n-1)$ and $x_{n} \sim \mathcal{N}(0,1)$ are independent. Let F_{1} be the corresponding cdf of $f(y ; 1)$. Then the cfd of y_{n} is

$$
\begin{aligned}
& \operatorname{Pr}\left(y_{n} \leq z\right) \\
= & \int_{0}^{z} \int_{0}^{z-y} f_{n-1}(y) f_{1}(x) \mathrm{d} x \mathrm{~d} y \\
= & \int_{0}^{z}\left(F_{1}(z-y)-F_{1}(0)\right) f_{n-1}(y) \mathrm{d} x \mathrm{~d} y \\
= & \int_{0}^{z} F_{1}(z-y) f_{n-1}(y) \mathrm{d} y
\end{aligned}
$$

and the pdf of y_{n} is (let $\left.y=t z\right)$

$$
\begin{aligned}
& \int_{0}^{z} \frac{1}{2^{\frac{1}{2}} \Gamma\left(\frac{1}{2}\right)}(z-y)^{\frac{1}{2}-1} \exp \left(-\frac{z-y}{2}\right) \frac{1}{2^{\frac{n-1}{2}} \Gamma\left(\frac{n-1}{2}\right)} y^{\frac{n-1}{2}-1} \exp \left(-\frac{y}{2}\right) \mathrm{d} y \\
= & \frac{1}{2^{\frac{1}{2}} \Gamma\left(\frac{1}{2}\right)} \frac{1}{2^{\frac{n-1}{2}} \Gamma\left(\frac{n-1}{2}\right)} \int_{0}^{z}(z-y)^{\frac{1}{2}-1} y^{\frac{n-1}{2}-1} \exp \left(-\frac{z}{2}\right) \mathrm{d} y \\
= & \frac{\exp \left(-\frac{z}{2}\right) z^{\frac{n-1}{2}}}{2^{\frac{n}{2}} \Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{n-1}{2}\right)} \int_{0}^{1}(1-t)^{\frac{1}{2}-1} t^{\frac{n-1}{2}-1} \mathrm{~d} t \\
= & \frac{\exp \left(-\frac{z}{2}\right) z^{\frac{n}{2}-1}}{2^{\frac{n}{2}} \Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{n-1}{2}\right)} B\left(\frac{n-1}{2}, \frac{1}{2}\right) \\
= & \frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} z^{\frac{n}{2}-1} \exp \left(-\frac{z}{2}\right) .
\end{aligned}
$$

Theorem 4.3. If the n-component vector \mathbf{y} is distributed according to $\mathcal{N}(\boldsymbol{\nu}, \mathbf{T})$ with $\mathbf{T} \succ \mathbf{0}$, then

$$
\mathbf{y}^{\top} \mathbf{T}^{-1} \mathbf{y} \sim \chi_{n}^{2}\left(\boldsymbol{\nu}^{\top} \mathbf{T}^{-1} \boldsymbol{\nu}\right) .
$$

If $\boldsymbol{\nu}=\mathbf{0}$, the distribution is the central χ^{2}-distribution.
Proof. Let \mathbf{C} be a non-singular matrix such that $\mathbf{C T C}^{\top}=\mathbf{I}$. Define $\mathbf{z}=\mathbf{C y}$, then \mathbf{z} is normally distributed with mean

$$
\mathbf{C E}[\mathbf{y}]=\mathbf{C} \boldsymbol{\nu} \triangleq \boldsymbol{\lambda}
$$

and covariance matrix

$$
\mathbb{E}\left[(\mathbf{z}-\boldsymbol{\lambda})(\mathbf{z}-\boldsymbol{\lambda})^{\top}\right]=\mathbf{C} \mathbb{E}\left[(\mathbf{y}-\boldsymbol{\nu})(\mathbf{y}-\boldsymbol{\nu})^{\top}\right] \mathbf{C}^{\top}=\mathbf{C T} \mathbf{C}^{\top}=\mathbf{I}
$$

Then we have

$$
\mathbf{y}^{\top} \mathbf{T}^{-1} \mathbf{y}=\mathbf{z}^{\top} \mathbf{C}^{-\top} \mathbf{T}^{-1} \mathbf{C}^{-1} \mathbf{z}=\mathbf{z}^{\top}\left(\mathbf{C T} \mathbf{C}^{\top}\right)^{-1} \mathbf{z}=\mathbf{z}^{\top} \mathbf{z}
$$

which is the sum of squares of the components of \mathbf{z}. Similarly, we have $\boldsymbol{\nu}^{\top} \mathbf{T}^{-1} \boldsymbol{\nu}=\boldsymbol{\lambda}^{\top} \boldsymbol{\lambda}$. Thus, the random variable $\mathbf{y}^{\top} \mathbf{T}^{-1} \mathbf{y}$ is distributed as $\sum_{i=1}^{n} z_{i}^{2}$, where z_{1}, \ldots, z_{n} are independently normally distributed with means $\lambda_{1}, \ldots, \lambda_{n}$ respectively, and variances 1 . By definition this is the noncentral χ^{2}-distribution with noncentrality parameter $\sum_{i=1}^{n} \lambda_{i}^{2}=\boldsymbol{\nu}^{\top} \mathbf{T}^{-1} \boldsymbol{\nu}$.

Theorem 4.4. The probability density function (pdf) for the noncentral χ^{2}-distribution is

$$
f\left(v ; p, \tau^{2}\right)= \begin{cases}\frac{\exp \left(-\frac{1}{2}\left(\tau^{2}+v\right)\right) v^{\frac{p}{2}-1}}{2^{\frac{p}{2}} \sqrt{\pi}} \sum_{\beta=0}^{\infty} \frac{\tau^{2 \beta} v^{\beta} \Gamma\left(\beta+\frac{1}{2}\right)}{(2 \beta)!\Gamma\left(\frac{p}{2}+\beta\right)} & v>0, \\ 0, & \text { otherwise. }\end{cases}
$$

Proof. $\chi_{p}^{2}\left(\tau^{2}\right)$ with $\tau^{2}=\sum_{i=1}^{p} \lambda_{i}^{2}$ can be constructed via $\mathbf{y}^{\top} \mathbf{y}$ with $\mathbf{y} \sim \mathcal{N}(\boldsymbol{\lambda}, \mathbf{I})$.
Let \mathbf{Q} be $p \times p$ orthogonal matrix with elements of the first row being

$$
q_{i 1}=\frac{\lambda_{i}}{\sqrt{(\boldsymbol{\lambda})^{\top} \boldsymbol{\lambda}}}
$$

for $i=1, \ldots, p$. Then $\mathbf{z}=\mathbf{Q y}$ is distributed according to $\mathcal{N}(\boldsymbol{\tau}, \mathbf{I})$, where

$$
\boldsymbol{\tau}=\left[\begin{array}{c}
\tau \\
0 \\
\vdots \\
0
\end{array}\right]
$$

where $\tau=\sqrt{\boldsymbol{\lambda}^{\top} \boldsymbol{\lambda}}$. Let $\mathbf{v}=\mathbf{y}^{\top} \mathbf{y}=\mathbf{z}^{\top} \mathbf{z}=\sum_{i=1}^{p} z_{i}^{2}$. Then $w=\sum_{i=2}^{p} z_{i}^{2}$ has a χ^{2}-distribution with $p-1$ degrees of freedom, and z_{1} and w have as joint density

$$
\begin{aligned}
& \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(z_{1}-\tau\right)^{2}\right) \frac{1}{2^{\frac{p-1}{2}} \Gamma\left(\frac{p-1}{2}\right)} w^{\frac{p-1}{2}-1} \exp \left(-\frac{w}{2}\right) \\
= & C \exp \left(-\frac{1}{2}\left(\tau^{2}+z_{1}^{2}+w\right)\right) w^{\frac{p-3}{2}} \exp \left(\tau z_{1}\right) \\
= & C \exp \left(-\frac{1}{2}\left(\tau^{2}+z_{1}^{2}+w\right)\right) w^{\frac{p-3}{2}} \sum_{\alpha=0}^{\infty} \frac{\tau^{\alpha} z_{1}^{\alpha}}{\alpha!}
\end{aligned}
$$

where $C^{-1}=2^{\frac{p}{2}} \sqrt{\pi} \Gamma\left(\frac{p-1}{2}\right)$. The joint density of $v=w+z_{1}^{2}$ and z_{1} is obtained by substituting $w=v-z_{1}^{2}$ (the Jacobian being 1):

$$
C \exp \left(-\frac{1}{2}\left(\tau^{2}+v\right)\right)\left(v-z_{1}^{2}\right)^{\frac{p-3}{2}} \sum_{\alpha=0}^{\infty} \frac{\tau^{\alpha} z_{1}^{\alpha}}{\alpha!}
$$

The joint density of v and $u=z_{1} / \sqrt{v}$ is $\left(\mathrm{d} z_{1}=\sqrt{v} \mathrm{~d} u\right)$

$$
C \exp \left(-\frac{1}{2}\left(\tau^{2}+v\right)\right) v^{\frac{p-2}{2}}\left(1-u^{2}\right)^{\frac{p-3}{2}} \sum_{\alpha=0}^{\infty} \frac{\tau^{\alpha} v^{\frac{\alpha}{2}} u^{\alpha}}{\alpha!}
$$

The admissible range of z given v is $-\sqrt{v}$ to \sqrt{v}, and the admissible range of u is -1 to 1 . When we integrate above joint density with respect to u term by term, the terms for a odd integrate to 0 , since such a term is an odd function of u. In the other integrations we substitute $u=\sqrt{s}\left(\mathrm{~d} u=\frac{\sqrt{s}}{2} \mathrm{~d} s\right)$ to obtain

$$
\begin{aligned}
& \int_{-1}^{1}\left(1-u^{2}\right)^{\frac{p-3}{2}} u^{2 \beta} \mathrm{~d} u \\
= & 2 \int_{0}^{1}\left(1-u^{2}\right)^{\frac{p-3}{2}} u^{2 \beta} \mathrm{~d} u \\
= & \int_{0}^{1}(1-s)^{\frac{p-3}{2}} s^{\beta-\frac{1}{2}} \mathrm{~d} s \\
= & B\left(\frac{p-1}{2}, \beta+\frac{1}{2}\right) \\
= & \frac{\Gamma\left(\frac{p-1}{2}\right) \Gamma\left(\beta+\frac{1}{2}\right)}{\Gamma\left(\frac{p}{2}+\beta\right)}
\end{aligned}
$$

by the usual properties of the beta and gamma functions. Thus the density of v is

$$
\frac{1}{2^{\frac{p}{2}} \sqrt{\pi}} \exp \left(-\frac{1}{2}\left(\tau^{2}+v\right)\right) v^{\frac{p}{2}-1} \sum_{\beta=0}^{\infty} \frac{\tau^{2 \beta} v^{\beta} \Gamma\left(\beta+\frac{1}{2}\right)}{(2 \beta)!\Gamma\left(\frac{p}{2}+\beta\right)}
$$

for $v>0$.

Theorem 4.5. Define the likelihood ratio criterion as

$$
\lambda=\frac{\max _{\boldsymbol{\Sigma} \in \mathbb{S}_{p}^{++}} L\left(\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}\right)}{\max _{\boldsymbol{\mu} \in \mathbb{R}^{p}, \boldsymbol{\Sigma} \in \mathbb{S}_{p}^{++}} L(\boldsymbol{\mu}, \boldsymbol{\Sigma})},
$$

where

$$
L(\boldsymbol{\mu}, \boldsymbol{\Sigma})=(2 \pi)^{-\frac{p N}{2}}(\operatorname{det}(\boldsymbol{\Sigma}))^{-\frac{N}{2}} \exp \left(-\frac{1}{2} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}\right)\right)
$$

then we have

$$
\lambda^{\frac{2}{N}}=\frac{1}{1+T^{2} /(N-1)}
$$

where $T^{2}=N\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)^{\top} \mathbf{S}^{-1}\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)$.
Proof. The maximum likelihood estimators of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ are

$$
\hat{\boldsymbol{\mu}}_{\Omega}=\overline{\mathbf{x}} \quad \text { and } \quad \hat{\boldsymbol{\Sigma}}_{\Omega}=\frac{1}{N} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top}
$$

If we restrict $\boldsymbol{\mu}=\boldsymbol{\mu}_{0}$, the likelihood function is maximized at

$$
\hat{\boldsymbol{\Sigma}}_{\omega}=\frac{1}{N} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}_{0}\right)\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}_{0}\right)^{\top} .
$$

Furthermore, we have

$$
\max _{\boldsymbol{\mu} \in \mathbb{R}^{p}, \boldsymbol{\Sigma} \in \mathbb{S}_{p}^{++}} L(\boldsymbol{\mu}, \boldsymbol{\Sigma})=(2 \pi)^{-\frac{p N}{2}}\left(\operatorname{det}\left(\boldsymbol{\Sigma}_{\Omega}\right)\right)^{-\frac{N}{2}} \exp \left(-\frac{1}{2} p N\right)
$$

because of

$$
\begin{aligned}
& \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\boldsymbol{\mu}}\right)^{\top} \hat{\boldsymbol{\Sigma}}_{\Omega}^{-1}\left(\mathbf{x}_{\alpha}-\overline{\boldsymbol{\mu}}\right) \\
= & \operatorname{tr}\left(\hat{\boldsymbol{\Sigma}}_{\Omega}^{-1} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\boldsymbol{\mu}}\right)\left(\mathbf{x}_{\alpha}-\overline{\boldsymbol{\mu}}\right)^{\top}\right) \\
= & \operatorname{tr}\left(n \mathbf{I}_{p}\right)=n p
\end{aligned}
$$

Similarly, we also have

$$
\max _{\boldsymbol{\Sigma} \in \mathbb{S}_{p}^{++}} L\left(\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}\right)=(2 \pi)^{-\frac{p N}{2}}\left(\operatorname{det}\left(\boldsymbol{\Sigma}_{\omega}\right)\right)^{-\frac{N}{2}} \exp \left(-\frac{1}{2} p N\right)
$$

Thus the likelihood ratio criterion is

$$
\begin{aligned}
\lambda & =\frac{(2 \pi)^{-\frac{p N}{2}}\left(\operatorname{det}\left(\boldsymbol{\Sigma}_{\Omega}\right)\right)^{-\frac{N}{2}} \exp \left(-\frac{1}{2} p N\right)}{(2 \pi)^{-\frac{p N}{2}}\left(\operatorname{det}\left(\boldsymbol{\Sigma}_{\omega}\right)\right)^{-\frac{N}{2}} \exp \left(-\frac{1}{2} p N\right)}=\frac{\left(\operatorname{det}\left(\boldsymbol{\Sigma}_{\omega}\right)\right)^{\frac{N}{2}}}{\left(\operatorname{det}\left(\boldsymbol{\Sigma}_{\Omega}\right)\right)^{\frac{N}{2}}} \\
& =\frac{\left(\operatorname{det}\left(\sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top}\right)\right)^{\frac{N}{2}}}{\left(\operatorname{det}\left(\sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}_{0}\right)\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}_{0}\right)^{\top}\right)\right)^{\frac{N}{2}}}=\frac{(\operatorname{det}(\mathbf{A}))^{\frac{N}{2}}}{\left(\operatorname{det}\left(\mathbf{A}+N\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)^{\top}\right)\right)^{\frac{N}{2}}}
\end{aligned}
$$

where $\mathbf{A}=\sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top}=(N-1) \mathbf{S}$. Hence, we obtain

$$
\begin{aligned}
\lambda^{\frac{2}{N}} & =\frac{\operatorname{det}(\mathbf{A})}{\operatorname{det}\left(\mathbf{A}+\left(\sqrt{N}\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)\right)\left(\sqrt{N}\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)^{\top}\right)\right)} \\
& =\frac{1}{1+N\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)^{\top} \mathbf{A}^{-1}\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)} \\
& =\frac{1}{1+T^{2} /(N-1)}
\end{aligned}
$$

where $T^{2}=N\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)^{\top} \mathbf{S}^{-1}\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)=(N-1) N\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)^{\top} \mathbf{A}^{-1}\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)$ and we use the property of Schur complement to obtain

$$
\operatorname{det}\left(\left[\begin{array}{cc}
\mathbf{A} & \mathbf{u} \\
-\mathbf{u}^{\top} & 1
\end{array}\right]\right)=\operatorname{det}\left(\mathbf{A}+\mathbf{u u}^{\top}\right)=\operatorname{det}\left(\left[\begin{array}{cc}
1 & -\mathbf{u}^{\top} \\
\mathbf{u} & \mathbf{A}
\end{array}\right]\right)=\operatorname{det}(\mathbf{A})\left(1+\mathbf{u}^{\top} \mathbf{A}^{-1} \mathbf{u}\right)
$$

with $\mathbf{u}=\sqrt{N}\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)$. Recall that The decomposition

$$
\mathbf{M}=\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I} & \mathbf{B D}^{-1} \\
\mathbf{0} & \mathbf{I}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C} & \mathbf{0} \\
\mathbf{0} & \mathbf{D}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
\mathbf{D}^{-1} \mathbf{C} & \mathbf{I}
\end{array}\right]
$$

means we have $\operatorname{det}(\mathbf{M})=\operatorname{det}(\mathbf{D}) \operatorname{det}\left(\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}\right)$.
Lemma 4.1. For any $p \times p$ non-singular matrices \mathbf{C} and \mathbf{H} and any vector \mathbf{k}, we have

$$
\mathbf{k}^{\top} \mathbf{H}^{-1} \mathbf{k}=(\mathbf{C k})^{\top}\left(\mathbf{C H C}{ }^{\top}\right)^{-1}(\mathbf{C k})
$$

Proof. We have $\left.(\mathbf{C k})^{\top}(\mathbf{C H C})^{\top}\right)^{-1}(\mathbf{C k})=\mathbf{k}^{\top} \mathbf{C}^{\top}\left(\mathbf{C}^{\top}\right)^{-1}(\mathbf{H})^{-1} \mathbf{C}^{-1}(\mathbf{C k})=\mathbf{k}^{\top} \mathbf{H}^{-1} \mathbf{k}$.
Remark 4.1. This lemma means

$$
T^{* 2}=N\left(\overline{\mathbf{x}}^{*}-\mathbf{0}\right)^{\top}\left(\mathbf{S}^{*}\right)^{-1}\left(\overline{\mathbf{x}}^{*}-\mathbf{0}\right)=N(\mathbf{C} \overline{\mathbf{x}}-\mathbf{0})^{\top}(\mathbf{C S C})^{-1}\left(\mathbf{C} \overline{\mathbf{x}}^{*}-\mathbf{0}\right)=N(\overline{\mathbf{x}}-\mathbf{0})^{\top} \mathbf{S}^{-1}\left(\overline{\mathbf{x}}^{*}-\mathbf{0}\right)=T^{2}
$$

Theorem 4.6. Suppose $\mathbf{y}_{1}, \ldots, \mathbf{y}_{m}$ are independent with \mathbf{y}_{α} distributed according to $\mathcal{N}\left(\boldsymbol{\Gamma} \mathbf{w}_{\alpha}, \boldsymbol{\Phi}\right)$, where \mathbf{w}_{α} is an r-component vector. Let $\mathbf{H}=\sum_{\alpha=1}^{m} \mathbf{w}_{\alpha} \mathbf{w}_{\alpha}^{\top}$ assumed non-singular, $\mathbf{G}=\sum_{\alpha=1}^{m} \mathbf{y}_{\alpha} \mathbf{w}_{\alpha}^{\top} \mathbf{H}^{-1}$ and

$$
\mathbf{C}=\sum_{\alpha=1}^{m}\left(\mathbf{y}_{\alpha}-\mathbf{G} \mathbf{w}_{\alpha}\right)\left(\mathbf{y}_{\alpha}-\mathbf{G} \mathbf{w}_{\alpha}\right)^{\top}=\sum_{\alpha=1}^{m} \mathbf{y}_{\alpha} \mathbf{y}_{\alpha}^{\top}-\mathbf{G} \mathbf{H G}{ }^{\top}
$$

Then \mathbf{C} is distributed as

$$
\sum_{\alpha=1}^{m-r} \mathbf{u}_{\alpha} \mathbf{u}_{\alpha}^{\top}
$$

where $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m-r}$ are independently distributed according to $\mathcal{N}(\mathbf{0}, \boldsymbol{\Phi})$ independently of \mathbf{G}.
Proof. Theorem 4.3.3 of "Theodore W. Anderson. An Introduction to Multivariate Statistical Analysis. John Wiley \& Sons Inc; 3rd Edition."

Theorem 4.7. Let $T^{2}=\mathbf{y}^{\top} \mathbf{S}^{-1} \mathbf{y}$, where \mathbf{y} is distributed according to $\mathcal{N}_{p}(\boldsymbol{\nu}, \boldsymbol{\Sigma})$ and $n \mathbf{S}$ is independently distributed as $\sum_{\alpha=1}^{n} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$ with $\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}$ independent, each with distribution $\mathcal{N}_{p}(\mathbf{0}, \boldsymbol{\Sigma})$. Then the random variable

$$
\frac{T^{2}}{n} \cdot \frac{n-p+1}{p}
$$

is distributed as a noncentral F-distribution with p and $n-p+1$ degrees of freedom and noncentrality parameter $\boldsymbol{\nu}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\nu}$. If $\boldsymbol{\nu}=\mathbf{0}$, the distribution is central F.

Theorem 4.8. Let $T^{2}=\mathbf{y}^{\top} \mathbf{S}^{-1} \mathbf{y}$, where \mathbf{y} is distributed according to $\mathcal{N}_{p}(\boldsymbol{\nu}, \boldsymbol{\Sigma})$ and $n \mathbf{S}$ is independently distributed as $\sum_{\alpha=1}^{n} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$ with $\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}$ independent, each with distribution $\mathcal{N}_{p}(\mathbf{0}, \boldsymbol{\Sigma})$. Then the random variable

$$
\frac{T^{2}}{n} \cdot \frac{n-p+1}{p}
$$

is distributed as a noncentral F-distribution with p and $n-p+1$ degrees of freedom and noncentrality parameter $\boldsymbol{\nu}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\nu}$. If $\boldsymbol{\nu}=\mathbf{0}$, the distribution is central F.
Proof. Let \mathbf{D} be a non-singular matrix such that $\mathbf{D} \boldsymbol{\Sigma} \mathbf{D}^{\top}=\mathbf{I}$, and define

$$
\mathbf{y}^{*}=\mathbf{D} \mathbf{y}, \quad \mathbf{S}^{*}=\mathbf{D S D}^{\top}, \quad \boldsymbol{\nu}^{*}=\mathbf{D} \boldsymbol{\nu}
$$

Lemma 4.1 means

$$
T^{2}=\left(\mathbf{y}^{*}\right)^{\top}\left(\mathbf{S}^{*}\right)^{-1} \mathbf{y}^{*}
$$

where \mathbf{y}^{*} is distributed according to $\mathcal{N}\left(\boldsymbol{\nu}^{*}, \mathbf{I}\right)$ and

$$
n \mathbf{S}^{*}=\sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha}^{*}\left(\mathbf{z}_{\alpha}^{*}\right)^{\top}=\sum_{\alpha=1}^{N-1} \mathbf{D} \mathbf{z}_{\alpha}\left(\mathbf{D} \mathbf{z}_{\alpha}\right)^{\top}
$$

with $\mathbf{z}_{\alpha}^{*}=\mathbf{D} \mathbf{z}_{\alpha}$ independent, each with distribution $\mathcal{N}(\mathbf{0}, \mathbf{I})$. We also have

$$
\boldsymbol{\nu}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\nu}=(\mathbf{D} \boldsymbol{\nu})^{\top}\left(\mathbf{D} \boldsymbol{\Sigma} \mathbf{D}^{\top}\right)^{-1}\left(\mathbf{D} \boldsymbol{\nu}^{*}\right)=\left(\boldsymbol{\nu}^{*}\right)^{\top} \boldsymbol{\nu}^{*}
$$

Let the first row of a $p \times p$ orthogonal matrix \mathbf{Q} be defined by

$$
q_{i 1}=\frac{y_{i}^{*}}{\sqrt{\left(\mathbf{y}^{*}\right)^{\top} \mathbf{y}^{*}}}
$$

for $i=1, \ldots, p$. Since \mathbf{Q} depends on \mathbf{y}^{*}, it is a random matrix. Now let

$$
\mathbf{u}=\mathbf{Q y}^{*} \quad \text { and } \quad \mathbf{B}=\mathbf{Q}\left(n \mathbf{S}^{*}\right) \mathbf{Q}^{\top}
$$

where $n=N-1$. The definition of \mathbf{Q} means

$$
u_{1}=\sum_{i=1}^{p} q_{1 i} y_{i}^{*}=\frac{\sum_{i=1}^{p}\left(y_{i}^{*}\right)^{2}}{\sqrt{\left(\mathbf{y}^{*}\right)^{\top} \mathbf{y}^{*}}}=\sqrt{\left(\mathbf{y}^{*}\right)^{\top} \mathbf{y}^{*}}
$$

and

$$
u_{j}=\sum_{i=1}^{p} q_{j i} y_{i}^{*}=\sqrt{\left(\mathbf{y}^{*}\right)^{\top} \mathbf{y}^{*}} \sum_{i=1}^{p} q_{j i} q_{1 i}=0
$$

for $j=2, \ldots, p$. Then

$$
\begin{aligned}
\frac{T^{2}}{n} & =\frac{\left(\mathbf{y}^{*}\right)^{\top}\left(\mathbf{S}^{*}\right)^{-1} \mathbf{y}^{*}}{n}=(\mathbf{Q} \mathbf{u})^{\top}\left(\mathbf{Q}^{\top} \mathbf{B Q}\right)^{-1} \mathbf{Q}^{\top} \mathbf{u}=\mathbf{u}^{\top} \mathbf{Q}^{\top}\left(\mathbf{Q}^{\top}\right)^{-1} \mathbf{B}^{-1} \mathbf{Q}^{-1} \mathbf{Q}^{\top} \mathbf{u}=\mathbf{u}^{\top} \mathbf{B}^{-1} \mathbf{u} \\
& =\left[\begin{array}{llll}
u_{1} & 0 & \ldots & 0
\end{array}\right]\left[\begin{array}{cccc}
b^{11} & b^{12} & \ldots & b^{1 p} \\
b^{21} & b^{22} & \ldots & b^{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
b^{p 1} & b^{p 2} & \ldots & b^{p p}
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
0 \\
\vdots \\
0
\end{array}\right]=u_{1}^{2} b^{11}
\end{aligned}
$$

where $b^{i j}$ is the (i, j)-th entry of \mathbf{B}^{-1}. Using Schur Complement, we have

$$
\begin{equation*}
\frac{1}{b^{11}}=b_{11}-\mathbf{b}_{(1)}^{\top} \mathbf{B}_{22}^{-1} \mathbf{b}_{(1)} \triangleq b_{11.2, \ldots, p} \tag{6}
\end{equation*}
$$

with

$$
\mathbf{B}=\left[\begin{array}{ll}
b_{11} & \mathbf{b}_{(1)}^{\top} \\
\mathbf{b}_{(1)} & \mathbf{B}_{22}
\end{array}\right]
$$

and

$$
\frac{T^{2}}{n}=\frac{u_{1}^{2}}{b_{11.2, \ldots, p}}=\frac{\left(\mathbf{y}^{*}\right)^{\top} \mathbf{y}^{*}}{b_{11.2, \ldots, p}}
$$

The conditional distribution of \mathbf{B} given \mathbf{Q} is that of

$$
\mathbf{B}=\sum_{\alpha=1}^{n} \mathbf{Q} \mathbf{z}_{\alpha}^{*}\left(\mathbf{Q} \mathbf{z}_{\alpha}^{*}\right)^{\top}=\sum_{\alpha=1}^{n} \mathbf{v}_{\alpha}^{*}\left(\mathbf{v}_{\alpha}^{*}\right)^{\top}=\left[\begin{array}{cc}
\sum_{\alpha=1}^{n}\left(\mathbf{v}_{\alpha 1}^{*}\right)^{2} & \sum_{\alpha=1}^{n} \mathbf{v}_{\alpha, 1}^{*}\left(\mathbf{v}_{\alpha, 2-p}^{*}\right)^{\top} \\
\sum_{\alpha=1}^{n} \mathbf{v}_{\alpha, 1}^{*}\left(\mathbf{v}_{\alpha, 2-p}^{*}\right) & \sum_{\alpha=1}^{n}\left(\mathbf{v}_{\alpha, 2-p}^{*}\right)\left(\mathbf{v}_{\alpha, 2-p}^{*}\right)^{\top}
\end{array}\right]=\left[\begin{array}{cc}
b_{11} & \mathbf{b}_{(1)}^{\top} \\
\mathbf{b}_{(1)} & \mathbf{B}_{22}
\end{array}\right],
$$

where $\mathbf{v}_{\alpha}=\mathbf{Q} \mathbf{z}_{\alpha}^{*}$ are independent, each with distribution $\mathcal{N}(\mathbf{0}, \mathbf{I})$ since $\mathbf{Q} \mathbf{D} \boldsymbol{\Sigma} \mathbf{D}^{\top} \mathbf{Q}^{\top}=\mathbf{I}$. We denote

$$
\mathbf{G}=b_{(1)}^{\top} \mathbf{B}_{22}^{-1}=\sum_{\alpha=1}^{m} \mathbf{v}_{\alpha, 1}^{*}\left(\mathbf{v}_{\alpha, 2-p}^{*}\right)^{\top} \mathbf{B}_{22}^{-1}
$$

By Theorem 4.6, the random variable

$$
\begin{aligned}
b_{11.2, \ldots, p} & =b_{11}-\left(b_{(1)}^{\top} \mathbf{B}_{22}^{-1}\right) \mathbf{B}_{22} \mathbf{B}_{22}^{-1} b_{(1)} \\
& =\sum_{\alpha=1}^{n}\left(\mathbf{v}_{\alpha 1}^{*}\right)^{2}-\mathbf{G} \mathbf{B}_{22}^{-1} \mathbf{G}^{\top}
\end{aligned}
$$

is conditionally distributed as

$$
\sum_{\alpha=1}^{n-(p-1)} w_{\alpha}^{2}
$$

where conditionally the w_{α}^{2} are independent, each with the distribution $\mathcal{N}(0,1)$; that is, $b_{11.2, \ldots, p}$ is conditionally distributed as χ^{2} with $n-(p-1)$ degrees of freedom. Since the conditional distribution of $b_{11.2, \ldots, p}$ does not depend on \mathbf{Q}, it is unconditionally distributed as χ^{2}. The quantity $\left(\mathbf{y}^{*}\right)^{\top} \mathbf{y}^{*}$ has a noncentral χ^{2}-distribution with p degrees of freedom and noncentrality parameter $\left(\boldsymbol{\nu}^{*}\right)^{\top} \boldsymbol{\nu}^{*}=\boldsymbol{\nu}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\nu}^{\top}$ Then T is distributed as the ratio of a noncentral χ^{2} and an independent χ^{2}.

Remark 4.2. The equation (6) is based on the fact

$$
\mathbf{M}=\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B} \tag{7}\\
\mathbf{C} & \mathbf{D}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I} & \mathbf{B D}^{-1} \\
\mathbf{0} & \mathbf{I}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C} & \mathbf{0} \\
\mathbf{0} & \mathbf{D}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
\mathbf{D}^{-1} \mathbf{C} & \mathbf{I}
\end{array}\right]
$$

and

$$
\begin{aligned}
\mathbf{M}^{-1} & =\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right]^{-1}=\left(\left[\begin{array}{cc}
\mathbf{I} & \mathbf{B D}^{-1} \\
\mathbf{0} & \mathbf{I}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C} & \mathbf{0} \\
\mathbf{0} & \mathbf{D}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I} & 0 \\
\mathbf{D}^{-1} \mathbf{C} & \mathbf{I}
\end{array}\right]\right)^{-1} \\
& =\left[\begin{array}{cc}
\mathbf{I} & 0 \\
-\mathbf{D}^{-1} \mathbf{C} & \mathbf{I}
\end{array}\right]\left[\begin{array}{cc}
\left(\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}\right)^{-1} & 0 \\
0 & \mathbf{D}^{-1}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I} & -\mathbf{B D}^{-1} \\
0 & \mathbf{I}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\left(\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}\right)^{-1} & -\left(\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}\right)^{-1} \mathbf{B D}^{-1} \\
-\mathbf{D}^{-1} \mathbf{C}\left(\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}\right)^{-1} & \mathbf{D}^{-1}+\mathbf{D}^{-1} \mathbf{C}\left(\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}\right)^{-1} \mathbf{B D}^{-1}
\end{array}\right] .
\end{aligned}
$$

Theorem 4.9. Let u be distributed according to the χ^{2}-distribution with a degrees of freedom and w be distributed according to the χ^{2}-distribution with b degrees of freedom. The density of $v=u /(u+w)$, when u and w are independent is

$$
\begin{equation*}
\frac{1}{B\left(\frac{a}{2}, \frac{b}{2}\right)} v^{\frac{a}{2}-1}(1-v)^{\frac{b}{2}-1}, \tag{8}
\end{equation*}
$$

where $B(\alpha, \beta)=\int_{0}^{1} t^{\alpha-1}(1-t)^{\beta-1} \mathrm{~d} t$.

Proof. Let

$$
v=\frac{u}{u+w} \quad \text { and } \quad z=u+w .
$$

Then $u=v z, w=(1-v) z$ and

$$
\operatorname{det}(\mathbf{J}(v, z))=\operatorname{det}\left(\left[\begin{array}{cc}
\frac{\partial u}{\partial v} & \frac{\partial u}{\partial z} \\
\frac{\partial w}{\partial v} & \frac{\partial w}{\partial z}
\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{cc}
z & v \\
-z & 1-v
\end{array}\right]\right)=z .
$$

Since v and w are independent, the joint density of u and w is

$$
f_{u, v}(u, w)=\frac{1}{2^{\frac{a}{2}} \Gamma\left(\frac{a}{2}\right)} u^{\frac{a}{2}-1} \exp \left(-\frac{u}{2}\right) \cdot \frac{1}{2^{\frac{b}{2}} \Gamma\left(\frac{b}{2}\right)} w^{\frac{b}{2}-1} \exp \left(-\frac{w}{2}\right)
$$

and the joint density of v and z is

$$
\begin{aligned}
f_{v, z}(v, z) & =f_{u, v}(v z,(1-v) z) \operatorname{det}(\mathbf{J}(v, z)) \\
& =\frac{1}{2^{\frac{a}{2}} \Gamma\left(\frac{a}{2}\right)}(v z)^{\frac{a}{2}-1} \exp \left(-\frac{v z}{2}\right) \cdot \frac{1}{2^{\frac{b}{2}} \Gamma\left(\frac{b}{2}\right)}((1-v) z)^{\frac{b}{2}-1} \exp \left(-\frac{(1-v) z}{2}\right) \cdot z \\
& =\frac{1}{2^{\frac{a+b}{2}} \Gamma\left(\frac{a}{2}\right) \Gamma\left(\frac{b}{2}\right)} v^{\frac{a}{2}-1} \cdot(1-v)^{\frac{b}{2}-1} z^{\frac{a+b}{2}-1} \exp \left(-\frac{z}{2}\right) .
\end{aligned}
$$

Consider that the density of χ^{2}-distribution with $a+b$ degrees of freedom, we have

$$
\int_{-\infty}^{\infty} \frac{1}{2^{\frac{a+b}{2}} \Gamma\left(\frac{a+b}{2}\right)} z^{\frac{a+b}{2}-1} \exp \left(-\frac{z}{2}\right) \mathrm{d} z=1 .
$$

Hence,

$$
\begin{aligned}
f_{z}(z) & =\int_{-\infty}^{\infty} f_{v, z}(v, z) \mathrm{d} z \\
& =\frac{1}{2^{\frac{a+b}{2}} \Gamma\left(\frac{a}{2}\right) \Gamma\left(\frac{b}{2}\right)} v^{\frac{a}{2}-1}(1-v)^{\frac{b}{2}-1} \int_{-\infty}^{\infty} z^{\frac{a+b}{2}-1} \exp \left(-\frac{z}{2}\right) \mathrm{d} z \\
& =\frac{2^{\frac{a+b}{2}} \Gamma\left(\frac{a+b}{2}\right)}{2^{\frac{a+b}{2}} \Gamma\left(\frac{a}{2}\right) \Gamma\left(\frac{b}{2}\right)} v^{\frac{a}{2}-1}(1-v)^{\frac{b}{2}-1} \\
& =\frac{1}{B\left(\frac{a}{2}+\frac{b}{2}\right)}{ }^{\frac{a}{2}-1}(1-v)^{\frac{b}{2}-1} .
\end{aligned}
$$

Remark 4.3. Beta distribution is a conjugate prior the binomial random variable. The binomial random variable X with parameters n and θ has the probability mass function

$$
f(X=k \mid n, \theta)=\mathrm{C}_{n}^{k} \theta^{k}(1-\theta)^{n-k} .
$$

Let θ follows Beta distribution (prior distribution) with parameters a and b whose density function is

$$
g(\theta \mid a, b)=\frac{1}{B(a, b)} v^{a-1}(1-v)^{b-1} .
$$

Then we can write the density for the posterior distribution of θ by Bayes rule

$$
P(\theta \mid X=k)=\frac{P(X=k \mid \theta) P(\theta)}{P(X=k)}
$$

$$
\begin{aligned}
& =\frac{\mathrm{C}_{n}^{k} \theta^{k}(1-\theta)^{n-k} \cdot \frac{1}{B(a, b)} \theta^{a-1}(1-\theta)^{b-1}}{P(X=k)} \\
& =\frac{\mathrm{C}_{n}^{k}}{P(X=k) B(a, b)} \theta^{k+a-1}(1-\theta)^{n-k+b-1}
\end{aligned}
$$

Since $\mathrm{C}_{n}^{k} /(P(X=k) B(a, b))$ is independent on θ, it follows Beta distribution with parameters $k+a$ and $n-k+b$ is density.
Theorem 4.10. Let x_{1}, x_{2}, \ldots be a sequence of independently identically distributed random vectors with mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$. Let

$$
\hat{\mathbf{x}}_{N}=\frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha}, \quad \hat{\mathbf{S}}_{N}=\frac{1}{N-1} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top}
$$

and

$$
T_{N}^{2}=N\left(\overline{\mathbf{x}}_{N}-\boldsymbol{\mu}_{0}\right)^{\top} \mathbf{S}_{N}^{-1}\left(\overline{\mathbf{x}}_{N}-\boldsymbol{\mu}_{0}\right)
$$

Then the limiting distribution of T_{N}^{2} as $N \rightarrow \infty$ is the χ^{2}-distribution with p degrees of freedom if $\boldsymbol{\mu}=\boldsymbol{\mu}_{0}$.
Proof. By the central limit theorem, the limiting distribution of $\sqrt{N}\left(\overline{\mathbf{x}}_{N}-\boldsymbol{\mu}\right)$ is $\mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$. The sample covariance matrix converges stochastically to $\boldsymbol{\Sigma}$. Then the limiting distribution of T^{2} is the distribution of

$$
\mathbf{y}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{y}
$$

where \mathbf{y} has the distribution $\mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$. The theorem follows from Theorem 4.3.
Lemma 4.2. If \mathbf{v} is a vector of p components and if \mathbf{B} is a non-singular $p \times p$ matrix, then $\mathbf{v}^{\top} \mathbf{B}^{-1} \mathbf{v}$ is the nonzero root of

$$
\operatorname{det}\left(\mathbf{v} \mathbf{v}^{\top}-\lambda \mathbf{B}\right)=0
$$

Proof. The non-zero root λ_{1} of $\operatorname{det}\left(\mathbf{v v}^{\top}-\lambda \mathbf{B}\right)=0$ associate with vector $\boldsymbol{\beta} \neq \mathbf{0}$ satisfying

$$
\left(\mathbf{v} \mathbf{v}^{\top}-\lambda_{1} \mathbf{B}\right) \boldsymbol{\beta}=\mathbf{0} \Longrightarrow \mathbf{v} \mathbf{v}^{\top} \boldsymbol{\beta}=\lambda_{1} \mathbf{B} \boldsymbol{\beta} \Longrightarrow\left(\mathbf{v}^{\top} \mathbf{B}^{-1} \mathbf{v}\right) \mathbf{v}^{\top} \boldsymbol{\beta}=\lambda_{1} \mathbf{v}^{\top} \boldsymbol{\beta}
$$

We can obtain that $\mathbf{v}^{\top} \boldsymbol{\beta} \neq 0$, otherwise $\left(\mathbf{v} \mathbf{v}^{\top}-\lambda_{1} \mathbf{B}\right) \boldsymbol{\beta}=\mathbf{0}$ means $\mathbf{B} \boldsymbol{\beta}=\mathbf{0}$ which is impossible since \mathbf{B} is non-singular. Hence $\lambda_{1}=\mathbf{v}^{\top} \mathbf{B}^{-1} \mathbf{v}$.

Remark 4.4. Using this lemma with $\mathbf{v}=\sqrt{N}\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)$ and $\mathbf{B}=\mathbf{A}$, we can prove $T^{2} /(N-1)$ is the non-zero root of $\operatorname{det}\left(N\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)\left(\overline{\mathbf{x}}-\boldsymbol{\mu}_{0}\right)^{\top}-\lambda \mathbf{A}\right)=0$.

Lemma 4.3. For any positive definite matrix $\mathbf{S} \in \mathbb{R}^{p \times p}$ and $\mathbf{y}, \boldsymbol{\gamma} \in \mathbb{R}^{p}$, we have

$$
\left(\gamma^{\top} \mathbf{y}\right)^{2} \leq\left(\gamma^{\top} \mathbf{S} \gamma\right)\left(\mathbf{y}^{\top} \mathbf{S}^{-1} \mathbf{y}\right)
$$

Proof. For $\gamma=\mathbf{0}$, the result is trivial. Otherwise, let

$$
b=\frac{\gamma^{\top} \mathbf{y}}{\gamma^{\top} \mathbf{S} \gamma}
$$

Then we have

$$
\begin{aligned}
0 & \leq(\mathbf{y}-b \mathbf{S} \boldsymbol{\gamma})^{\top} \mathbf{S}^{-1}(\mathbf{y}-b \mathbf{S} \boldsymbol{\gamma}) \\
& =\mathbf{y}^{\top} \mathbf{S}^{-1} \mathbf{y}-b \mathbf{y}^{\top} \mathbf{S}^{-1} \mathbf{S} \boldsymbol{\gamma}-b \boldsymbol{\gamma}^{\top} \mathbf{S} \mathbf{S}^{-1} \mathbf{y}-b^{2} \boldsymbol{\gamma}^{\top} \mathbf{S S}^{-1} \mathbf{S} \boldsymbol{\gamma} \\
& =\mathbf{y}^{\top} \mathbf{S}^{-1} \mathbf{y}-2 b \mathbf{y}^{\top} \boldsymbol{\gamma}+b^{2} \boldsymbol{\gamma}^{\top} \mathbf{S} \boldsymbol{\gamma} \\
& =\mathbf{y}^{\top} \mathbf{S}^{-1} \mathbf{y}-\frac{\left(\boldsymbol{\gamma}^{\top} \mathbf{y}\right)^{2}}{\boldsymbol{\gamma}^{\top} \mathbf{S} \boldsymbol{\gamma}}
\end{aligned}
$$

which implies the desired result.

Theorem 4.11. Let $\left\{\mathbf{x}_{\alpha}^{(i)}\right\}$ for $\alpha=1, \ldots, N_{i}, i=1, \ldots, q$ be samples from $\mathcal{N}\left(\boldsymbol{\mu}^{(i)}, \boldsymbol{\Sigma}\right)$, $i=1, \ldots, q$, respectively and suppose

$$
\sum_{i=1}^{q} \beta_{i} \boldsymbol{\mu}^{(i)}=\boldsymbol{\mu}
$$

where $\beta_{1}, \ldots, \beta_{q}$ are given scalars and $\boldsymbol{\mu}$ is a given vector. Define the criterion

$$
T^{2}=c\left(\sum_{i=1}^{q} \beta_{i} \overline{\mathbf{x}}^{(i)}-\boldsymbol{\mu}\right) \mathbf{S}^{-1}\left(\sum_{i=1}^{q} \beta_{i} \overline{\mathbf{x}}^{(i)}-\boldsymbol{\mu}\right)^{\top}
$$

where

$$
\overline{\mathbf{x}}^{(i)}=\frac{1}{N_{i}} \sum_{\alpha=1}^{N_{i}} \mathbf{x}_{\alpha}^{(i)}, \quad \frac{1}{c}=\sum_{i=1}^{q} \frac{\beta_{i}^{2}}{N_{i}}
$$

and

$$
\left(\sum_{i=1}^{q} N_{i}-q\right) S=\sum_{i=1}^{q} \sum_{\alpha=1}^{N_{i}}\left(\mathbf{x}_{\alpha}^{(i)}-\overline{\mathbf{x}}^{(i)}\right)\left(\mathbf{x}_{\alpha}^{(i)}-\overline{\mathbf{x}}^{(i)}\right)^{\top}
$$

Then this T^{2} has the T^{2}-distribution with $\sum_{i=1}^{q} N_{i}-q$ degrees of freedom.
Proof. Since $\mathbf{x}_{\alpha}^{(i)} \sim \mathcal{N}\left(\boldsymbol{\mu}^{(i)}, \boldsymbol{\Sigma}\right)$, we have

$$
\overline{\mathbf{x}}^{(i)} \sim \mathcal{N}\left(\boldsymbol{\mu}^{(i)}, \frac{1}{N_{i}} \boldsymbol{\Sigma}\right) \quad \Longrightarrow \quad \beta_{i}\left(\overline{\mathbf{x}}^{(i)}-\boldsymbol{\mu}_{i}\right) \sim \mathcal{N}\left(0, \frac{\beta_{i}^{2}}{N_{i}} \boldsymbol{\Sigma}\right)
$$

and

$$
\sum_{i=1}^{q} \beta_{i} \overline{\mathbf{x}}^{(i)}-\boldsymbol{\mu}=\sum_{i=1}^{q} \beta_{i}\left(\overline{\mathbf{x}}^{(i)}-\boldsymbol{\mu}^{(i)}\right) \sim \mathcal{N}\left(\mathbf{0}, \sum_{i=1}^{q} \frac{\beta_{i}^{2}}{N_{i}} \boldsymbol{\Sigma}\right) \Longrightarrow \sqrt{c}\left(\sum_{i=1}^{q} \beta_{i} \overline{\mathbf{x}}^{(i)}-\boldsymbol{\mu}\right) \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})
$$

On the other hand, we can write

$$
\sum_{i=1}^{q} \sum_{\alpha=1}^{N_{i}}\left(\mathbf{x}_{\alpha}^{(i)}-\overline{\mathbf{x}}^{(i)}\right)\left(\mathbf{x}_{\alpha}^{(i)}-\overline{\mathbf{x}}^{(i)}\right)^{\top}=\sum_{i=1}^{q} \sum_{\alpha=1}^{N_{i}-1} \mathbf{z}_{\alpha}^{(i)}\left(\mathbf{z}_{\alpha}^{(i)}\right)^{\top}
$$

where $\mathbf{z}_{\alpha}^{(i)}$ are independent and $\mathbf{z}_{\alpha}^{(i)} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$. Hence,

$$
T^{2}=\sqrt{c}\left(\sum_{i=1}^{q} \beta_{i} \overline{\mathbf{x}}^{(i)}-\boldsymbol{\mu}\right) \mathbf{S}^{-1}\left(\sqrt{c}\left(\sum_{i=1}^{q} \beta_{i} \overline{\mathbf{x}}^{(i)}-\boldsymbol{\mu}\right)\right)^{\top}
$$

has the T^{2}-distribution with $\sum_{i=1}^{q} N_{i}-q$ degrees of freedom.
Lemma 4.4. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}$ be independent samples from $\mathcal{N}\left(\boldsymbol{\mu}_{\alpha}, \boldsymbol{\Sigma}_{\alpha}\right)$ for $i=1, \ldots, m$. Define

$$
\mathbf{z}_{1}=\sum_{\alpha=1}^{N} a_{\alpha} \mathbf{x}_{\alpha} \quad \text { and } \quad \mathbf{z}_{2}=\sum_{\alpha=1}^{N} b_{\alpha} \mathbf{x}_{\alpha}
$$

then

$$
\operatorname{Cov}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)=\sum_{\alpha=1}^{N} a_{\alpha} b_{\alpha} \boldsymbol{\Sigma}_{\alpha}
$$

Proof. The definitions mean

$$
\mathbf{z}_{1}=\left[\begin{array}{llll}
a_{1} \mathbf{I} & a_{2} \mathbf{I} & \ldots & a_{N} \mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{1} \\
\mathbf{x}_{2} \\
\ldots \\
\mathbf{x}_{N}
\end{array}\right] \quad \text { and } \quad \mathbf{z}_{2}=\left[\begin{array}{llll}
b_{1} \mathbf{I} & b_{2} \mathbf{I} & \ldots & b_{N} \mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{1} \\
\mathbf{x}_{2} \\
\ldots \\
\mathbf{x}_{N}
\end{array}\right]
$$

then

$$
\begin{aligned}
\operatorname{Cov}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right) & =\left[\begin{array}{llll}
a_{1} \mathbf{I} & a_{2} \mathbf{I} & \ldots & a_{N} \mathbf{I}
\end{array}\right] \operatorname{Cov}\left(\left[\begin{array}{c}
\mathbf{x}_{1} \\
\mathbf{x}_{2} \\
\ldots \\
\mathbf{x}_{N}
\end{array}\right],\left[\begin{array}{c}
\mathbf{x}_{1} \\
\mathbf{x}_{2} \\
\ldots \\
\mathbf{x}_{N}
\end{array}\right]\right)\left[\begin{array}{c}
b_{1} \mathbf{I} \\
b_{2} \mathbf{I} \\
\vdots \\
b_{N} \mathbf{I}
\end{array}\right] \\
& =\left[\begin{array}{llll}
a_{1} \mathbf{I} & a_{2} \mathbf{I} & \ldots & a_{N} \mathbf{I}
\end{array}\right]\left[\begin{array}{cccc}
\boldsymbol{\Sigma}_{1} & \mathbf{0} & \ldots & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\Sigma}_{2} & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \boldsymbol{\Sigma}_{N}
\end{array}\right]\left[\begin{array}{c}
b_{1} \mathbf{I} \\
b_{2} \mathbf{I} \\
\vdots \\
b_{N} \mathbf{I}
\end{array}\right] \\
& =\sum_{\alpha=1}^{N} a_{\alpha} b_{\alpha} \boldsymbol{\Sigma}_{\alpha} .
\end{aligned}
$$

Lemma 4.5. Let $\left\{\mathbf{x}_{\alpha}^{(i)}\right\}$ for $\alpha=1, \ldots, N_{i}$ be independent samples from $\mathcal{N}\left(\boldsymbol{\mu}^{(i)}, \boldsymbol{\Sigma}_{i}\right)$ for $i=1,2$, respectively. We suppose $N_{1}<N_{2}$ and define

$$
\mathbf{y}_{\alpha}=\mathbf{x}_{\alpha}^{(1)}-\sqrt{\frac{N_{1}}{N_{2}}} \mathbf{x}_{\alpha}^{(2)}+\frac{1}{\sqrt{N_{1} N_{2}}} \sum_{\beta=1}^{N_{1}} \mathbf{x}_{\beta}^{(2)}-\frac{1}{N_{2}} \sum_{\gamma=1}^{N_{2}} \mathbf{x}_{\gamma}^{(2)}
$$

for $\alpha=1, \ldots, N_{1}$. Then we have

$$
\overline{\mathbf{y}}=\frac{1}{N_{1}} \sum_{\alpha=1}^{N_{1}} \mathbf{y}_{\alpha}=\overline{\mathbf{x}}_{\alpha}^{(1)}-\overline{\mathbf{x}}_{\alpha}^{(2)}
$$

and

$$
\operatorname{Cov}\left(\mathbf{y}_{\alpha}, \mathbf{y}_{\alpha^{\prime}}\right)= \begin{cases}\boldsymbol{\Sigma}_{1}+\frac{N_{1}}{N_{2}} \boldsymbol{\Sigma}_{2}, & \alpha=\alpha^{\prime} \\ \mathbf{0}, & \text { otherwise }\end{cases}
$$

Proof. We have

$$
\begin{aligned}
\overline{\mathbf{y}} & =\frac{1}{N_{1}} \sum_{\alpha=1}^{N_{1}} \mathbf{y}_{\alpha} \\
& =\frac{1}{N_{1}} \sum_{\alpha=1}^{N_{1}}\left(\mathbf{x}_{\alpha}^{(1)}-\sqrt{\frac{N_{1}}{N_{2}}} \mathbf{x}_{\alpha}^{(2)}+\frac{1}{\sqrt{N_{1} N_{2}}} \sum_{\beta=1}^{N_{1}} \mathbf{x}_{\beta}^{(2)}-\frac{1}{N_{2}} \sum_{\gamma=1}^{N_{2}} \mathbf{x}_{\gamma}^{(2)}\right) \\
& =\overline{\mathbf{x}}^{(1)}-\overline{\mathbf{x}}^{(2)}-\frac{1}{N_{1}} \sum_{\alpha=1}^{N_{1}}\left(\sqrt{\frac{N_{1}}{N_{2}}} \mathbf{x}_{\alpha}^{(2)}+\frac{1}{\sqrt{N_{1} N_{2}}} \sum_{\beta=1}^{N_{1}} \mathbf{x}_{\beta}^{(2)}\right) \\
& =\overline{\mathbf{x}}^{(1)}-\overline{\mathbf{x}}^{(2)}-\frac{1}{N_{1}} \sum_{\alpha=1}^{N_{1}} \sqrt{\frac{N_{1}}{N_{2}}} \mathbf{x}_{\alpha}^{(2)}+\frac{1}{\sqrt{N_{1} N_{2}}} \sum_{\beta=1}^{N_{1}} \mathbf{x}_{\beta}^{(2)} \\
& =\overline{\mathbf{x}}^{(1)}-\overline{\mathbf{x}}^{(2)} .
\end{aligned}
$$

We first consider the case of $\alpha=\alpha^{\prime}$. The independence means the covariance matrix of $\left[\mathbf{x}_{\alpha}^{(1)} ; \mathbf{z}_{\alpha}\right]^{\top}$ has the form of

$$
\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{1} & \mathbf{0} \\
\mathbf{0} & \times
\end{array}\right]
$$

where

$$
\mathbf{z}_{\alpha}=-\sqrt{\frac{N_{1}}{N_{2}}} \mathbf{x}_{\alpha}^{(2)}+\frac{1}{\sqrt{N_{1} N_{2}}} \sum_{\beta=1}^{N_{1}} \mathbf{x}_{\beta}^{(2)}-\frac{1}{N_{2}} \sum_{\gamma=1}^{N_{2}} \mathbf{x}_{\gamma}^{(2)}
$$

Hence, we only needs to focus on the covariance matrix of

$$
\begin{aligned}
\mathbf{z}_{\alpha}= & -\sqrt{\frac{N_{1}}{N_{2}}} \mathbf{x}_{\alpha}^{(2)}+\frac{1}{\sqrt{N_{1} N_{2}}} \sum_{\beta=1}^{N_{1}} \mathbf{x}_{\beta}^{(2)}-\frac{1}{N_{1}} \sum_{\gamma=1}^{N_{2}} \mathbf{x}_{\gamma}^{(2)} \\
= & \sum_{\gamma=1}^{\alpha-1}\left(\frac{1}{\sqrt{N_{1} N_{2}}}-\frac{1}{N_{2}}\right) \mathbf{x}_{\gamma}^{(2)}+\left(\frac{1}{\sqrt{N_{1} N_{2}}}-\frac{1}{N_{2}}-\sqrt{\frac{N_{1}}{N_{2}}}\right) \mathbf{x}_{\alpha}^{(2)} \\
& +\sum_{\gamma=\alpha+1}^{N_{1}}\left(\frac{1}{\sqrt{N_{1} N_{2}}}-\frac{1}{N_{2}}\right) \mathbf{x}_{\gamma}^{(2)}+\sum_{\gamma=N_{1}+1}^{N_{2}}\left(-\frac{1}{N_{2}}\right) \mathbf{x}_{\gamma}^{(2)}
\end{aligned}
$$

Lemma 4.4 means

$$
\begin{aligned}
\operatorname{Cov}\left(\mathbf{z}_{\alpha}, \mathbf{z}_{\alpha}\right)= & \left((\alpha-1)\left(\frac{1}{\sqrt{N_{1} N_{2}}}-\frac{1}{N_{2}}\right)^{2}+\left(\frac{1}{\sqrt{N_{1} N_{2}}}-\frac{1}{N_{2}}-\sqrt{\frac{N_{1}}{N_{2}}}\right)^{2}\right. \\
& \left.+\left(N_{1}-\alpha\right)\left(\frac{1}{\sqrt{N_{1} N_{2}}}-\frac{1}{N_{2}}\right)^{2}+\left(N_{2}-N_{1}\right) \sum_{\gamma=N_{1}+1}^{N_{2}}\left(-\frac{1}{N_{2}}\right)^{2}\right) \boldsymbol{\Sigma}_{2} \\
= & \left(\left(N_{1}-1\right)\left(\frac{1}{\sqrt{N_{1} N_{2}}}-\frac{1}{N_{2}}\right)^{2}+\left(\frac{1}{\sqrt{N_{1} N_{2}}}-\frac{1}{N_{2}}-\sqrt{\frac{N_{1}}{N_{2}}}\right)^{2}+\frac{\left(N_{2}-N_{1}\right)^{2}}{N_{2}^{2}}\right) \boldsymbol{\Sigma}_{2} \\
= & \frac{N_{1}}{N_{2}} \boldsymbol{\Sigma}_{2}
\end{aligned}
$$

which means $\operatorname{Cov}\left(\mathbf{y}_{\alpha}, \mathbf{y}_{\alpha}\right)=\boldsymbol{\Sigma}_{1}+\left(N_{1} / N_{2}\right) \boldsymbol{\Sigma}_{2}$.
Then we consider the case of $\alpha \neq \alpha^{\prime}$. We have

$$
\begin{aligned}
& \mathbf{y}_{\alpha}-\mathbb{E}\left[\mathbf{y}_{\alpha}\right] \\
= & \mathbf{x}_{\alpha}^{(1)}-\sqrt{\frac{N_{1}}{N_{2}}} \mathbf{x}_{\alpha}^{(2)}+\frac{1}{\sqrt{N_{1} N_{2}}} \sum_{\beta=1}^{N_{1}} \mathbf{x}_{\beta}^{(2)}-\frac{1}{N_{2}} \sum_{\gamma=1}^{N_{2}} \mathbf{x}_{\gamma}^{(2)}-\left(\boldsymbol{\mu}^{(1)}-\boldsymbol{\mu}^{(2)}\right) \\
= & \mathbf{x}_{\alpha}^{(1)}-\boldsymbol{\mu}^{(1)}-\sqrt{\frac{N_{1}}{N_{2}}}\left(\mathbf{x}_{\alpha}^{(2)}-\boldsymbol{\mu}^{(2)}\right)+\frac{1}{\sqrt{N_{1} N_{2}}} \sum_{\beta=1}^{N_{1}}\left(\mathbf{x}_{\beta}^{(2)}-\boldsymbol{\mu}^{(2)}\right)-\frac{1}{N_{2}} \sum_{\gamma=1}^{N_{2}}\left(\mathbf{x}_{\gamma}^{(2)}-\boldsymbol{\mu}^{(2)}\right) \\
= & \mathbf{x}_{\alpha}^{(1)}-\boldsymbol{\mu}^{(1)}-\sqrt{\frac{N_{1}}{N_{2}}}\left(\mathbf{x}_{\alpha}^{(2)}-\boldsymbol{\mu}^{(2)}\right)+\left(\frac{1}{\sqrt{N_{1} N_{2}}}-\frac{1}{N_{2}}\right) \sum_{\beta=1}^{N_{1}}\left(\mathbf{x}_{\beta}^{(2)}-\boldsymbol{\mu}^{(2)}\right)-\frac{1}{N_{2}} \sum_{\gamma=N_{1}+1}^{N_{2}}\left(\mathbf{x}_{\gamma}^{(2)}-\boldsymbol{\mu}^{(2)}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbf{y}_{\alpha^{\prime}}-\mathbb{E}\left[\mathbf{y}_{\alpha^{\prime}}\right] \\
= & \mathbf{x}_{\alpha^{\prime}}^{(1)}-\boldsymbol{\mu}^{(1)}-\sqrt{\frac{N_{1}}{N_{2}}}\left(\mathbf{x}_{\alpha^{\prime}}^{(2)}-\boldsymbol{\mu}^{(2)}\right)+\left(\frac{1}{\sqrt{N_{1} N_{2}}}-\frac{1}{N_{2}}\right) \sum_{\beta=1}^{N_{1}}\left(\mathbf{x}_{\beta}^{(2)}-\boldsymbol{\mu}^{(2)}\right)-\frac{1}{N_{2}} \sum_{\gamma=N_{1}+1}^{N_{2}}\left(\mathbf{x}_{\gamma}^{(2)}-\boldsymbol{\mu}^{(2)}\right) .
\end{aligned}
$$

The independence means

$$
\begin{aligned}
& \mathbb{E}\left[\left(\mathbf{y}_{\alpha}-\mathbb{E}\left[\mathbf{y}_{\alpha}\right]\right)\left(\mathbf{y}_{\alpha^{\prime}}-\mathbb{E}\left[\mathbf{y}_{\alpha^{\prime}}\right]\right)^{\top}\right] \\
= & -2 \sqrt{\frac{N_{1}}{N_{2}}}\left(\frac{1}{\sqrt{N_{1} N_{2}}}-\frac{1}{N_{2}}\right) \boldsymbol{\Sigma}_{2}+\left(\frac{1}{\sqrt{N_{1} N_{2}}}-\frac{1}{N_{2}}\right)^{2} N_{1} \boldsymbol{\Sigma}_{2}+\frac{N_{2}-N_{1}}{N_{2}^{2}} \boldsymbol{\Sigma}_{2} \\
= & \left(-2\left(\frac{1}{N_{2}}-\frac{\sqrt{N_{1}}}{N_{2} \sqrt{N_{2}}}\right)+\left(\frac{1}{N_{1} N_{2}}-\frac{2}{N_{2} \sqrt{N_{1} N_{2}}}+\frac{1}{N_{2}^{2}}\right) N_{1}+\frac{1}{N_{2}}-\frac{N_{1}}{N_{2}^{2}}\right) \boldsymbol{\Sigma}_{2} \\
= & \mathbf{0} .
\end{aligned}
$$

5 Sample Correlation Coefficients

Lemma 5.1. If $\mathbf{y}_{1}, \ldots, \mathbf{y}_{N}$ are independently distributed, if

$$
\mathbf{y}_{\alpha}=\left[\begin{array}{l}
\mathbf{y}_{\alpha}^{(1)} \\
\mathbf{y}_{\alpha}^{(2)}
\end{array}\right]
$$

has the density $f\left(\mathbf{y}_{\alpha}\right)$ and if the conditional density of $\mathbf{y}_{\alpha}^{(2)}$ given $\mathbf{y}_{\alpha}^{(1)}$ is $f\left(\mathbf{y}_{\alpha}^{(2)} \mid \mathbf{y}_{\alpha}^{(1)}\right)$ for $\alpha=1, \ldots, n$. Then in the conditional distribution of $\mathbf{y}_{1}^{(2)}, \ldots, \mathbf{y}_{N}^{(2)}$ given $\mathbf{y}_{1}^{(1)}, \ldots, \mathbf{y}_{N}^{(1)}$, the random vectors $\mathbf{y}_{1}^{(2)}, \ldots, \mathbf{y}_{N}^{(2)}$ are independent and the density of $\mathbf{y}_{\alpha}^{(2)}$ is $f\left(\mathbf{y}_{\alpha}^{(2)} \mid \mathbf{y}_{\alpha}^{(1)}\right)$.
Proof. The marginal density of $\mathbf{y}_{1}^{(1)}, \ldots, \mathbf{y}_{N}^{(1)}$ is

$$
\prod_{\alpha=1}^{N} f_{1}\left(\mathbf{y}_{\alpha}^{(1)}\right)
$$

where $f_{1}\left(\mathbf{y}_{\alpha}^{(1)}\right)$ is the marginal density of $\mathbf{y}_{\alpha}^{(1)}$, and the conditional density of $\mathbf{y}_{1}^{(2)}, \ldots, \mathbf{y}_{N}^{(2)}$ given $\mathbf{y}_{1}^{(1)}, \ldots, \mathbf{y}_{N}^{(1)}$ is

$$
\frac{\prod_{\alpha=1}^{N} f\left(\mathbf{y}_{\alpha}\right)}{\prod_{\alpha=1}^{N} f_{1}\left(\mathbf{y}_{\alpha}^{(1)}\right)}=\prod_{\alpha=1}^{N} \frac{f\left(\mathbf{y}_{\alpha}^{(1)}, \mathbf{y}_{\alpha}^{(2)}\right)}{f_{1}\left(\mathbf{y}_{\alpha}^{(1)}\right)}=\prod_{\alpha=1}^{N} f\left(\mathbf{y}_{\alpha}^{(2)} \mid \mathbf{y}_{\alpha}^{(1)}\right) .
$$

Theorem 5.1. If the pairs $\left(z_{11}, z_{21}\right), \ldots,\left(z_{1 n}, z_{2 n}\right)$ are independent and each pair are distributed according to

$$
\left[\begin{array}{l}
z_{1 \alpha} \\
z_{2 \alpha}
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{1} \sigma_{2} \rho \\
\sigma_{1} \sigma_{2} \rho & \sigma_{2}^{2}
\end{array}\right]\right), \quad \text { where } \alpha=1, \ldots, n
$$

then given $z_{11}, z_{12}, \ldots, z_{1 n}$, the conditional distributions of

$$
b=\frac{\sum_{\alpha=1}^{n} z_{2 \alpha} z_{1 \alpha}}{\sum_{i=1}^{n} z_{1 \alpha}^{2}} \quad \text { and } \quad \frac{u}{\sigma^{2}}=\sum_{\alpha=1}^{n} \frac{\left(z_{2 \alpha}-b z_{1 \alpha}\right)^{2}}{\sigma^{2}}
$$

are $\mathcal{N}\left(\beta, \sigma^{2} / c^{2}\right)$ and χ^{2}-distribution with $n-1$ degrees of freedom, respectively; and b and u are independent, where

$$
\beta=\frac{\rho \sigma_{2}}{\sigma_{1}}, \quad \sigma^{2}=\sigma_{2}^{2}\left(1-\rho^{2}\right) \quad \text { and } \quad c^{2}=\sum_{i=1}^{n} z_{1 \alpha}^{2} .
$$

Proof. The conditional distribution of $z_{2 \alpha}$ given $z_{1 \alpha}$ is $\mathcal{N}\left(\beta z_{1 \alpha}, \sigma^{2}\right)$. Let $\mathbf{v}_{i}=\left[z_{i 1}, \ldots, z_{i n}\right]^{\top}$ for $i=1,2$. Lemma 5.1 means the density of \mathbf{v}_{2} given \mathbf{v}_{1} is $\mathcal{N}\left(\beta \mathbf{v}_{1}, \sigma^{2} \mathbf{I}\right)$ since $z_{21}, \ldots, z_{2 n}$ are independent. We also have

$$
\mathbf{v}_{1}^{\top}\left(\mathbf{v}_{2}-b \mathbf{v}_{1}\right)=\mathbf{v}_{1}^{\top}\left(\mathbf{v}_{2}-\frac{\mathbf{v}_{1}^{\top} \mathbf{v}_{2}}{\mathbf{v}_{1}^{\top} \mathbf{v}_{1}} \mathbf{v}_{1}\right)=0
$$

and

$$
u=\left(\mathbf{v}_{2}-b \mathbf{v}_{1}\right)^{\top}\left(\mathbf{v}_{2}-b \mathbf{v}_{1}\right)=\mathbf{v}_{2}^{\top} \mathbf{v}_{2}-2 b \mathbf{v}_{1}^{\top} \mathbf{v}_{2}+b^{2} \mathbf{v}_{1}^{\top} \mathbf{v}_{1}=\mathbf{v}_{2}^{\top} \mathbf{v}_{2}-b^{2} \mathbf{v}_{1}^{\top} \mathbf{v}_{1} .
$$

Apply Theorem 3.4 with $x_{\alpha}=z_{2 \alpha}$ and $y_{\alpha}=\sum_{\gamma=1}^{n} c_{\alpha \gamma} z_{2 \gamma}$ for $\alpha=1, \ldots, n$, where the first row of orthogonal matrix \mathbf{C} is $(1 / c) \mathbf{v}_{1}^{\top}$. Then y_{1}, \ldots, y_{n} are independently normally distributed with variance σ^{2} and means

$$
\mathbb{E}\left[y_{1}\right]=\sum_{\gamma=1}^{n} c_{1 \gamma} \mathbb{E}\left[z_{2 \gamma}\right]=\sum_{\gamma=1}^{n} c_{1 \gamma} \beta z_{1 \gamma}=\beta c
$$

and

$$
\mathbb{E}\left[y_{\alpha}\right]=\sum_{\gamma=1}^{n} c_{\alpha \gamma} \mathbb{E}\left[z_{2 \gamma}\right]=\sum_{\gamma=1}^{n} c_{\alpha \gamma} \beta z_{1 \gamma}=0 .
$$

Thus, we have

$$
b=\frac{\sum_{\alpha=1}^{n} z_{2 \alpha} z_{1 \alpha}}{\sum_{i=1}^{n} z_{1 \alpha}^{2}}=\frac{\sum_{\alpha=1}^{n} c z_{2 \alpha} c_{1 \alpha}}{c^{2}}=\frac{y_{1}}{c} \sim \mathcal{N}\left(\beta, \frac{\sigma^{2}}{c^{2}}\right) .
$$

and

$$
u=\sum_{\alpha=1}^{n} z_{2 \alpha}^{2}-b^{2} \sum_{\alpha=1}^{n} z_{1 \alpha}^{2}=\sum_{\alpha=1}^{n} y_{\alpha}^{2}-y_{1}^{2}=\sum_{\alpha=2}^{n} y_{\alpha}^{2},
$$

which is independent of b. Since we have $y_{\alpha} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ for $\alpha=2, \ldots, n$, the random variable u / σ^{2} has a χ^{2}-distribution with $n-1$ degrees of freedom.

Theorem 5.2. If x and y are independently distributed, x having the distribution $\mathcal{N}(0,1)$ and y having the χ^{2}-distribution with m degrees of freedom, then $t=x / \sqrt{y / m}$ (has t-distribution with m degrees of freedom) has the density

$$
\frac{\Gamma\left(\frac{m+1}{2}\right)}{\sqrt{m \pi} \Gamma\left(\frac{m}{2}\right)}\left(1+\frac{t^{2}}{m}\right)^{-\frac{m+1}{2}} .
$$

Proof. The joint density of x and y is

$$
f_{x, y}(x, y)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right) \cdot \frac{1}{2^{\frac{m}{2}} \Gamma\left(\frac{m}{2}\right)} y^{\frac{m}{2}-1} \exp \left(-\frac{y}{2}\right)
$$

The definition of t means $x=t \sqrt{y / m}$, then the joint density of t and y is

$$
\begin{align*}
f_{t, y}(t, y) & =\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{t^{2} y}{2 m}\right) \cdot \frac{1}{2^{\frac{m}{2}} \Gamma\left(\frac{m}{2}\right)} y^{\frac{m}{2}-1} \exp \left(-\frac{y}{2}\right) \cdot \frac{\mathrm{d} t \sqrt{y / m}}{\mathrm{~d} t} \\
& =\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{t^{2} y}{2 m}\right) \cdot \frac{1}{2^{\frac{m}{2}} \Gamma\left(\frac{m}{2}\right)} y^{\frac{m}{2}-1} \exp \left(-\frac{y}{2}\right) \cdot\left(\frac{y}{m}\right)^{\frac{1}{2}} \tag{9}\\
& =\frac{1}{2^{\frac{m+1}{2}} \sqrt{m \pi} \Gamma\left(\frac{m}{2}\right)} \exp \left(-\left(\frac{t^{2}}{2 m}+\frac{1}{2}\right) y\right) \cdot y^{\frac{m-1}{2}} .
\end{align*}
$$

The density of t can be obtained by integrating out y. Consider the expression of gamma function

$$
\begin{align*}
\Gamma(\alpha) & =\int_{0}^{+\infty} \tilde{t}^{\alpha-1} \exp (-\tilde{t}) \mathrm{d} \tilde{t} \\
& =\int_{0}^{+\infty}\left(\frac{t^{2}}{2 m}+\frac{1}{2}\right)^{\alpha-1} y^{\alpha-1} \exp \left(-\left(\frac{t^{2}}{2 m}+\frac{1}{2}\right) y\right)\left(\frac{t^{2}}{2 m}+\frac{1}{2}\right) \mathrm{d} y \tag{10}\\
& =\left(\frac{t^{2}}{2 m}+\frac{1}{2}\right)^{\alpha} \int_{0}^{+\infty} y^{\alpha-1} \exp \left(-\left(\frac{t^{2}}{2 m}+\frac{1}{2}\right) y\right) \mathrm{d} y
\end{align*}
$$

where we use the substitution

$$
\tilde{t}=\left(\frac{t^{2}}{2 m}+\frac{1}{2}\right) y
$$

Connecting (9) and (10) with $\alpha=\frac{m+1}{2}$, we have

$$
\begin{aligned}
f_{t}(t) & =\int_{0}^{+\infty} f_{t, y}(t, y) \mathrm{d} y \\
& =\frac{1}{2^{\frac{m}{2}} \sqrt{m \pi} \Gamma\left(\frac{m+1}{2}\right)} \int_{0}^{+\infty} \exp \left(-\left(\frac{t^{2}}{2 m}+\frac{1}{2}\right) y\right) \cdot y^{\frac{m-1}{2}} \mathrm{~d} y \\
& =\frac{1}{2^{\frac{m}{2}} \sqrt{m \pi} \Gamma\left(\frac{m+1}{2}\right)}\left(\frac{t^{2}}{2 m}+\frac{1}{2}\right)^{-\frac{m+1}{2}} \Gamma\left(\frac{m+1}{2}\right) \\
& =\frac{\Gamma\left(\frac{m+1}{2}\right)}{\sqrt{m \pi} \Gamma\left(\frac{m}{2}\right)}\left(\frac{t^{2}}{m}+1\right)^{-\frac{m+1}{2}}
\end{aligned}
$$

Theorem 5.3. Let us consider the likelihood ratio test of the hypothesis that $\rho=\rho_{0}$ based on a sample $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ from the bivariate normal distribution

$$
\mathcal{N}\left(\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right],\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{1} \sigma_{2} \rho \\
\sigma_{1} \sigma_{2} \rho & \sigma_{2}^{2}
\end{array}\right]\right)
$$

The set Ω consists of $\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}$ and ρ such that

$$
\sigma_{1}>0, \quad \sigma_{2}>0 \quad \text { and }-1<\rho<1
$$

and the set ω is the subset for which $\rho=\rho_{0}$. The likelihood ratio criterion is

$$
\frac{\sup _{\omega} L(\mathbf{x}, \boldsymbol{\theta})}{\sup _{\Omega} L(\mathbf{x}, \boldsymbol{\theta})}=\left(\frac{\left(1-\rho_{0}^{2}\right)\left(1-r^{2}\right)}{\left(1-\rho_{0} r\right)^{2}}\right)^{\frac{N}{2}}
$$

where

$$
r=\frac{a_{12}}{\sqrt{a_{11}} \sqrt{a_{22}}}, \quad \mathbf{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top} \quad \text { and } \quad \overline{\mathbf{x}}=\frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} .
$$

Proof. We have shown in the section of T^{2}-statistic that the likelihood maximized in Ω is

$$
\max _{\boldsymbol{\mu} \in \mathbb{R}^{p}, \boldsymbol{\Sigma} \in \mathbb{S}_{p}^{++}} L(\boldsymbol{\mu}, \boldsymbol{\Sigma})=(2 \pi)^{-\frac{p N}{2}}\left(\operatorname{det}\left(\boldsymbol{\Sigma}_{\Omega}\right)\right)^{-\frac{N}{2}} \exp \left(-\frac{1}{2} p N\right)
$$

where

$$
\boldsymbol{\Sigma}_{\Omega}=\frac{1}{N} \mathbf{A} \quad \text { with } \quad \overline{\mathbf{x}}=\frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha}, \quad \mathbf{A}=\sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \quad \text { and } \quad p=2
$$

Then we have

$$
\operatorname{det}\left(\boldsymbol{\Sigma}_{\Omega}\right)=\frac{a_{11} a_{22}-a_{12} a_{21}}{N^{2}}
$$

which implies

$$
\max _{\boldsymbol{\mu} \in \mathbb{R}^{p}, \boldsymbol{\Sigma} \in \mathbb{S}_{p}^{++}} L(\boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{N^{N} \exp (-N)}{(2 \pi)^{N}\left(a_{11} a_{22}-a_{12} a_{21}\right)^{\frac{N}{2}}}=\frac{N^{N} \exp (-N)}{(2 \pi)^{N}\left(1-r^{2}\right)^{\frac{N}{2}} a_{11}^{\frac{N}{2}} a_{22}^{\frac{N}{2}}}
$$

Let $\sigma^{2}=\sigma_{1} \sigma_{2}$ and $\tau=\sigma_{1} / \sigma_{2}$. Under the null hypothesis $\left(\rho=\rho_{0}\right)$, we have

$$
\operatorname{det}(\boldsymbol{\Sigma})=\sigma_{1}^{2} \sigma_{2}^{2}-\sigma_{1}^{2} \sigma_{1}^{2} \rho_{0}^{2}=\sigma^{4}\left(1-\rho_{0}^{2}\right), \quad \boldsymbol{\Sigma}^{-1}=\frac{1}{1-\rho_{0}^{2}}\left[\begin{array}{cc}
\frac{1}{\sigma_{1}^{2}} & -\frac{\rho_{0}}{\sigma_{1} \sigma_{2}} \\
-\frac{\rho_{0}}{\sigma_{1} \sigma_{2}} & \frac{1}{\sigma_{2}^{2}}
\end{array}\right]
$$

and

$$
\begin{aligned}
& \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)=\operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \mathbf{A}\right) \\
= & \frac{1}{1-\rho_{0}^{2}}\left(\frac{a_{11}}{\sigma_{1}^{2}}-\frac{2 \rho_{0} a_{12}}{\sigma_{1} \sigma_{2}}+\frac{a_{22}}{\sigma_{2}^{2}}\right) \\
= & \frac{1}{\left(1-\rho_{0}^{2}\right) \sigma^{2}}\left(\frac{a_{11}}{\tau}-2 \rho_{0} a_{12}+\tau a_{22}\right) .
\end{aligned}
$$

Then the likelihood function under the null hypothesis $\left(\rho=\rho_{0}\right)$ is

$$
\begin{equation*}
\frac{1}{(2 \pi)^{N}\left(1-\rho_{0}^{2}\right)^{\frac{N}{2}}\left(\sigma^{2}\right)^{N}} \exp \left(-\frac{a_{11} / \tau-2 \rho_{0} a_{12}+\tau a_{22}}{2 \sigma^{2}\left(1-\rho_{0}^{2}\right)}\right) \tag{11}
\end{equation*}
$$

The maximum of (11) with respect to τ occurs at

$$
\hat{\tau}=\sqrt{a_{11} / a_{22}}
$$

then the concentrated likelihood is

$$
\begin{equation*}
\frac{1}{(2 \pi)^{N}\left(1-\rho_{0}^{2}\right)^{\frac{N}{2}}\left(\sigma^{2}\right)^{N}} \exp \left(-\frac{\sqrt{a_{11}} \sqrt{a_{22}}\left(1-\rho_{0} r\right)}{\sigma^{2}\left(1-\rho_{0}^{2}\right)}\right) . \tag{12}
\end{equation*}
$$

The maximum of (12) occurs at

$$
\hat{\sigma}^{2}=\frac{\sqrt{a_{11}} \sqrt{a_{22}}\left(1-\rho_{0} r\right)}{N\left(1-\rho_{0}^{2}\right)}
$$

which is because of $f(x)=\exp (-b / x) / x^{N}$ leads to

$$
f^{\prime}(x)=\frac{\exp \left(-\frac{b}{x}\right) \cdot \frac{b}{x^{2}} \cdot x^{N}-\exp \left(-\frac{b}{x}\right) \cdot N x^{N-1}}{x^{2 N}}=\frac{\exp \left(-\frac{b}{x}\right) x^{N-2}(b-N x)}{x^{2 N}} .
$$

The likelihood ratio criterion is, therefore,

$$
\frac{\sup _{\omega} L(\mathbf{x}, \boldsymbol{\theta})}{\sup _{\Omega} L(\mathbf{x}, \boldsymbol{\theta})}=\left(\frac{\left(1-\rho_{0}^{2}\right)\left(1-r^{2}\right)}{\left(1-\rho_{0} r\right)^{2}}\right)^{\frac{N}{2}}
$$

Lemma 5.2. For random vector

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{p}
\end{array}\right] \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})
$$

where

$$
\boldsymbol{\mu}=\left[\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{p}
\end{array}\right] \quad \text { and } \quad \boldsymbol{\Sigma}=\left[\begin{array}{cccc}
\sigma_{11} & \sigma_{12} & \ldots & \sigma_{1 p} \\
\sigma_{21} & \sigma_{22} & \ldots & \sigma_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{p 1} & \sigma_{p 2} & \ldots & \sigma_{p p}
\end{array}\right]
$$

Then $\mathbb{E}\left[\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)\left(x_{k}-\mu_{k}\right)\right]=0$ and $\mathbb{E}\left[\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)\left(x_{k}-\mu_{k}\right)\left(x_{l}-\mu_{l}\right)\right]=\sigma_{i j} \sigma_{k l}+\sigma_{i k} \sigma_{j l}+\sigma_{i l} \sigma_{j k}$.
Theorem 5.4. Let

$$
\mathbf{A}(n)=\sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}_{N}\right)\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}_{N}\right)^{\top}
$$

where $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ are independently distributed according to $\mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $n=N-1$. Then the limiting distribution of

$$
\mathbf{B}(n)=\frac{1}{\sqrt{n}}(\mathbf{A}(n)-n \boldsymbol{\Sigma})
$$

is normal with mean $\mathbf{0}$ and covariance $\mathbb{E}\left[b_{i j}(n) b_{k l}(n)\right]=\sigma_{i k} \sigma_{j l}+\sigma_{i l} \sigma_{j k}$.
Proof. We have

$$
\mathbf{A}(n)=\sum_{\alpha=1}^{n} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}
$$

where $\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}$ are distributed according to $\mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$. We arrange the elements of $\mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$ in a vector such as

$$
\mathbf{y}_{\alpha}=\left[\begin{array}{c}
z_{1 \alpha}^{2} \\
z_{1 \alpha} z_{2 \alpha} \\
\vdots \\
z_{2 \alpha}^{2} \\
\vdots \\
z_{p \alpha}^{2}
\end{array}\right]
$$

The second moments of \mathbf{y}_{α} can be deduced from the forth moments of \mathbf{z}_{α} by using Lemma 5.2, that is,

$$
\mathbb{E}\left[z_{i \alpha} z_{j \alpha}\right]=\sigma_{i j}, \quad \mathbb{E}\left[z_{i \alpha} z_{j \alpha} z_{k \alpha} z_{l \alpha}\right]=\sigma_{i j} \sigma_{k l}+\sigma_{i k} \sigma_{j l}+\sigma_{i l} \sigma_{j k}
$$

and

$$
\begin{equation*}
\mathbb{E}\left[\left(z_{i \alpha} z_{j \alpha}-\sigma_{i j}\right)\left(z_{k \alpha} z_{l \alpha}-\sigma_{k l}\right)\right]=\sigma_{i k} \sigma_{j l}+\sigma_{i l} \sigma_{j k} \tag{13}
\end{equation*}
$$

Arranging the elements of $\boldsymbol{\Sigma}$ and $\mathbf{A}(n)$ as

$$
\boldsymbol{\nu}=\left[\begin{array}{c}
\sigma_{11} \\
\sigma_{12} \\
\vdots \\
\sigma_{22} \\
\vdots \\
\sigma_{p p}
\end{array}\right] \quad \text { and } \quad \mathbf{w}(n)=\left[\begin{array}{c}
a_{11}(n) \\
a_{12}(n) \\
\vdots \\
a_{22}(n) \\
\vdots \\
a_{p p}(n)
\end{array}\right]
$$

we obtain

$$
\frac{1}{\sqrt{n}}(\mathbf{w}(n)-n \boldsymbol{\nu})=\frac{1}{\sqrt{n}} \sum_{\alpha=1}^{n}\left(\mathbf{y}_{\alpha}-\boldsymbol{\nu}\right)
$$

Since $\mathbb{E}\left[\mathbf{y}_{\alpha}\right]=\boldsymbol{\mu}$ and covariance of \mathbf{y}_{α} satisfies (13), the multivariate central limit theorem implies the desired result.

Remark 5.1. In the analysis for the asymptotic distribution of sample correlation, we apply this theorem with

$$
\mathbf{A}(n)=\mathbf{C}(n) \quad \text { and } \quad \boldsymbol{\Sigma}=\left[\begin{array}{ll}
\sigma_{11} & \sigma_{12} \\
\sigma_{21} & \sigma_{22}
\end{array}\right]=\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right]
$$

Then the covariance matrix of limiting distribution of the vector

$$
\sqrt{n}(\mathbf{u}(n)-\mathbf{b})=\frac{1}{\sqrt{n}}\left(\left[\begin{array}{l}
c_{i i}(n) \\
c_{j j}(n) \\
c_{i j}(n)
\end{array}\right]-n \mathbf{b}\right)
$$

is

$$
\left[\begin{array}{ccc}
\sigma_{11} \sigma_{11}+\sigma_{11} \sigma_{11} & \sigma_{12} \sigma_{12}+\sigma_{12} \sigma_{12} & \sigma_{11} \sigma_{12}+\sigma_{12} \sigma_{11} \\
\sigma_{12} \sigma_{12}+\sigma_{12} \sigma_{12} & \sigma_{22} \sigma_{22}+\sigma_{22} \sigma_{22} & \sigma_{21} \sigma_{22}+\sigma_{22} \sigma_{21} \\
\sigma_{11} \sigma_{12}+\sigma_{12} \sigma_{11} & \sigma_{21} \sigma_{22}+\sigma_{22} \sigma_{21} & \sigma_{11} \sigma_{22}+\sigma_{12} \sigma_{21}
\end{array}\right]=\left[\begin{array}{ccc}
2 & 2 \rho^{2} & 2 \rho \\
2 \rho^{2} & 2 & 2 \rho \\
2 \rho & 2 \rho & 1+\rho^{2}
\end{array}\right]
$$

Theorem 5.5. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ be a sample from $\mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and partition the variables as

$$
\mathbf{x}=\left[\begin{array}{l}
\mathbf{x}^{(1)} \\
\mathbf{x}^{(2)}
\end{array}\right], \quad \boldsymbol{\mu}=\left[\begin{array}{l}
\boldsymbol{\mu}^{(1)} \\
\boldsymbol{\mu}^{(2)}
\end{array}\right] \quad \text { and } \quad \boldsymbol{\Sigma}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right]
$$

Define $\mathbf{B}=\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}, \boldsymbol{\Sigma}_{11.2}=\boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}$,

$$
\overline{\mathbf{x}}=\left[\begin{array}{c}
\overline{\mathbf{x}}^{(1)} \\
\overline{\mathbf{x}}^{(2)}
\end{array}\right]=\frac{1}{N} \sum_{\alpha=1}^{N}\left[\begin{array}{c}
\mathbf{x}_{\alpha}^{(1)} \\
\mathbf{x}_{\alpha}^{(2)}
\end{array}\right] \quad \text { and } \quad \mathbf{A}=\left[\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{A}_{21} & \mathbf{A}_{22}
\end{array}\right]=\frac{1}{N} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top} .
$$

Then the maximum likelihood estimators of $\boldsymbol{\mu}^{(1)}, \boldsymbol{\mu}^{(2)}, \mathbf{B}, \boldsymbol{\Sigma}_{11.2}$ and $\boldsymbol{\Sigma}_{22}$ are

$$
\begin{aligned}
\hat{\boldsymbol{\mu}}^{(1)} & =\overline{\mathbf{x}}^{(1)}, \quad \hat{\boldsymbol{\mu}}^{(2)}=\overline{\mathbf{x}}^{(2)}, \quad \hat{\mathbf{B}}=\mathbf{A}_{12} \mathbf{A}_{22}^{-1}, \\
\hat{\boldsymbol{\Sigma}}_{11.2} & =\frac{1}{N}\left(\mathbf{A}_{11}-\mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{21}\right) \quad \text { and } \quad \hat{\boldsymbol{\Sigma}}_{22}=\frac{1}{N} \mathbf{A}_{22} .
\end{aligned}
$$

Proof. The correspondence between $\boldsymbol{\Sigma}$ and $\left(\boldsymbol{\Sigma}_{11.2}, \mathbf{B}, \boldsymbol{\Sigma}_{22}\right)$ is one-by-one since

$$
\boldsymbol{\Sigma}_{12}=\mathbf{B} \boldsymbol{\Sigma}_{22} \quad \text { and } \quad \boldsymbol{\Sigma}_{11}=\boldsymbol{\Sigma}_{11.2}+\mathbf{B} \boldsymbol{\Sigma}_{22} \mathbf{B}^{\top}
$$

which implies the desired result.

6 The Wishart Distribution

Theorem 6.1. Let $\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}$ be independently distributed, each according to $\mathcal{N}_{p}(\mathbf{0}, \boldsymbol{\Sigma})$, where $n \geq p$; let

$$
\mathbf{A}=\sum_{\alpha=1}^{n} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}=\mathbf{T}^{*} \mathbf{T}^{* \top}
$$

where $t_{i j}^{*}=0$ for $i<j$, and $t_{i i}^{*}>0$ for $i=1, \ldots, p$. Then the density of \mathbf{T}^{*} is

$$
\frac{\prod_{i=1}^{p} t_{i i}^{*}{ }^{n-i} \exp \left(-\frac{1}{2} \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \mathbf{T}^{*} \mathbf{T}^{* \top}\right)\right)}{2^{\frac{p(n-2)}{2}} \pi^{\frac{p(p-1)}{4}}(\operatorname{det}(\boldsymbol{\Sigma}))^{\frac{n}{2}} \prod_{i=1}^{p} \Gamma\left(\frac{1}{2}(n+1-i)\right)}
$$

Proof. Let \mathbf{C} be the lower triangular matrix $\left(c_{i j}=0, i<j\right)$ such that $\boldsymbol{\Sigma}=\mathbf{C C}^{\top}$ and $c_{i i}>0$. Define $\mathbf{y}_{\alpha}=\mathbf{C}^{-1} \mathbf{z}_{\alpha}$ for $\alpha=1, \ldots, n$, which are be independently distributed, each according to $\mathcal{N}_{p}(\mathbf{0}, \mathbf{I})$. We have $\mathbf{T}^{*} \mathbf{T}^{* \top}=\sum_{\alpha=1}^{n} \mathbf{C} \mathbf{y}_{\alpha} \mathbf{y}_{\alpha}^{\top} \mathbf{C}^{\top}=\mathbf{C T} \mathbf{T}^{\top} \mathbf{C}^{\top}$. Let $\mathbf{T}=\mathbf{C}^{-1} \mathbf{T}^{*}$, then the matrix \mathbf{T} is the lower triangular with $t_{i i}>0$ and we have

$$
\mathbf{T} \mathbf{T}^{\top}=\mathbf{C}^{-1} \mathbf{T}^{*} \mathbf{T}^{* \top} \mathbf{C}^{-1}=\sum_{\alpha=1}^{n} \mathbf{C}^{-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} \mathbf{C}^{-1}=\sum_{\alpha=1}^{n} \mathbf{y}_{\alpha} \mathbf{y}_{\alpha}^{\top}
$$

The lemma in slides have shown that random variables $t_{i 1}, \ldots, t_{i i-1}$ are independently distributed and $t_{i j}$ is distributed according to $\mathcal{N}(0,1)$ for $i>j$; and $t_{i i}$ has the χ^{2}-distribution with $n-i+1$ degrees of freedom. Hence, the density of $w=t_{i i}^{2}$ is

$$
\frac{1}{2^{\frac{1}{2}(n+1-i)} \Gamma\left(\frac{1}{2}(n+1-i)\right)} w^{\frac{1}{2}(n+1-i)-1} \exp \left(-\frac{w}{2}\right)
$$

and the density of $t_{i i}=\sqrt{w}$ is (using $\mathrm{d} w / \mathrm{d} t_{i i}=2 t_{i i}$)

$$
\frac{1}{2^{\frac{1}{2}(n+1-i)} \Gamma\left(\frac{1}{2}(n+1-i)\right)}\left(t_{i i}^{2}\right)^{\frac{1}{2}(n+1-i)-1} \exp \left(-\frac{t_{i i}^{2}}{2}\right) \cdot\left(2 t_{i i}\right)=\frac{1}{2^{\frac{n-i-1}{2}} \Gamma\left(\frac{1}{2}(n+1-i)\right)} t_{i i}^{n-i} \exp \left(-\frac{t_{i i}^{2}}{2}\right)
$$

Then the joint density of $t_{i j}$ for $j=1, \ldots, i, i=1, \ldots, p$ is

$$
\begin{aligned}
& \prod_{i=1}^{p} \prod_{j=1}^{i-1} \frac{\exp \left(-\frac{1}{2} t_{i j}^{2}\right)}{\sqrt{2 \pi}} \cdot \prod_{i=1}^{p} \frac{t_{i i}^{n-i} \exp \left(-\frac{1}{2} t_{i i}^{2}\right)}{2^{\frac{n-i-1}{2}} \Gamma\left(\frac{1}{2}(n+1-i)\right)} \\
= & \prod_{i=1}^{p} \frac{\exp \left(-\frac{1}{2} \sum_{j=1}^{i-1} t_{i j}^{2}\right)}{(2 \pi)^{\frac{i-1}{2}}} \cdot \prod_{i=1}^{p} \frac{t_{i i}^{n-i} \exp \left(-\frac{t_{i i}^{2}}{2}\right)}{2^{\frac{n-i-1}{2}} \Gamma\left(\frac{1}{2}(n+1-i)\right)} \\
= & \prod_{i=1}^{p} \frac{\exp \left(-\frac{1}{2} \sum_{j=1}^{i} t_{i j}^{2}\right) t_{i i}^{n-i}}{2^{\frac{n}{2}-1} \pi^{\frac{i-1}{2}} \Gamma\left(\frac{1}{2}(n+1-i)\right)} \\
= & \frac{\exp \left(-\frac{1}{2} \sum_{i=1}^{p} \sum_{j=1}^{i} t_{i j}^{2}\right) \prod_{i=1}^{p} t_{i i}^{n-i}}{2^{\frac{p(n-2)}{2}} \pi^{\frac{p(p-1)}{4}} \prod_{i=1}^{p} \Gamma\left(\frac{1}{2}(n+1-i)\right)} .
\end{aligned}
$$

The Jacobian of the transformation from \mathbf{T} to $\mathbf{T}^{*}=\mathbf{C T}$ can be written as

$$
\left[\begin{array}{c}
t_{11}^{*} \\
t_{21}^{*} \\
t_{22}^{*} \\
\vdots \\
t_{p 1}^{*} \\
\vdots \\
t_{p p}^{*}
\end{array}\right]=\left[\begin{array}{ccccccc}
c_{11} & 0 & 0 & \cdots & 0 & \cdots & 0 \\
\times & c_{22} & 0 & \cdots & 0 & \cdots & 0 \\
\times & \times & c_{22} & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots & \ddots & \vdots \\
\times & \times & \times & \cdots & c_{p p} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
\times & \times & \times & \cdots & \times & \cdots & c_{p p}
\end{array}\right]\left[\begin{array}{c}
t_{11} \\
t_{21} \\
t_{22} \\
\vdots \\
t_{p 1} \\
\vdots \\
t_{p p}
\end{array}\right]
$$

Since the matrix of the transformation is triangular, its determinant is the product of the diagonal elements, namely, $\prod_{i=1}^{p} c_{i i}^{i}$. The Jacobian of the transformation from \mathbf{T} to \mathbf{T}^{*} is the reciprocal of the determinant. We also have $t_{i i}=t_{i i}^{*} / c_{i i}, \prod_{i=1}^{p} c_{i i}^{2}=\operatorname{det}(\mathbf{C}) \operatorname{det}\left(\mathbf{C}^{\top}\right)=\operatorname{det}(\boldsymbol{\Sigma})$ and

$$
\begin{aligned}
& \sum_{i=1}^{p} \sum_{j=1}^{i} t_{i j}^{2}=\operatorname{tr}\left(\mathbf{T} \mathbf{T}^{\top}\right)=\operatorname{tr}\left(\mathbf{C}^{-1} \mathbf{T}^{*} \mathbf{T}^{* \top} \mathbf{C}^{-\top}\right) \\
= & \operatorname{tr}\left(\mathbf{T}^{*} \mathbf{T}^{* \top} \mathbf{C}^{-\top} \mathbf{C}^{-1}\right)=\operatorname{tr}\left(\mathbf{T}^{*} \mathbf{T}^{* \top} \boldsymbol{\Sigma}^{-1}\right)
\end{aligned}
$$

Then the density of \mathbf{T}^{*} is

$$
\begin{aligned}
& \frac{\exp \left(-\frac{1}{2} \operatorname{tr}\left(\mathbf{T}^{*} \mathbf{T}^{* \top} \boldsymbol{\Sigma}^{-1}\right)\right) \prod_{i=1}^{p}\left(t_{i i}^{*} / c_{i i}\right)^{n-i}}{2^{\frac{p(n-2)}{2}} \pi^{\frac{p(p-1)}{4}} \prod_{i=1}^{p} \Gamma\left(\frac{1}{2}(n+1-i)\right)} \cdot\left(\prod_{i=1}^{p} c_{i i}^{i}\right)^{-1} \\
= & \frac{\exp \left(-\frac{1}{2} \operatorname{tr}\left(\mathbf{T}^{*} \mathbf{T}^{* \top} \boldsymbol{\Sigma}^{-1}\right)\right) \prod_{i=1}^{p} t_{i i}^{* n-i}}{2^{\frac{p(n-2)}{2}} \pi^{\frac{p(p-1)}{4}} \prod_{i=1}^{p} \Gamma\left(\frac{1}{2}(n+1-i)\right)} \cdot\left(\prod_{i=1}^{p} c_{i i}\right)^{n} \\
= & \frac{\exp \left(-\frac{1}{2} \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \mathbf{T}^{*} \mathbf{T}^{* \top}\right)\right) \prod_{i=1}^{p} t_{i i}^{*} n-i}{2^{\frac{p(n-2)}{2}} \pi^{\frac{p(p-1)}{4}}(\operatorname{det}(\boldsymbol{\Sigma}))^{\frac{n}{2}} \prod_{i=1}^{p} \Gamma\left(\frac{1}{2}(n+1-i)\right)} .
\end{aligned}
$$

Theorem 6.2. Let $\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}$ be independently distributed, each according to $\mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$, where $n \geq p$. Then the density of $\mathbf{A}=\sum_{\alpha=1}^{n} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$ is

$$
\frac{(\operatorname{det}(\mathbf{A}))^{\frac{n-p-1}{2}} \exp \left(-\frac{1}{2} \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \mathbf{A}\right)\right)}{2^{\frac{n p}{2}} \pi^{\frac{p(p-1)}{4}}(\operatorname{det}(\boldsymbol{\Sigma}))^{\frac{n}{2}} \prod_{i=1}^{p} \Gamma\left(\frac{1}{2}(n+1-i)\right)}
$$

for \mathbf{A} positive definite, and 0 otherwise.
Proof. Following the proof of Theorem 6.1, we only needs to consider the transformation from \mathbf{T}^{*} to \mathbf{A}. The relation $\mathbf{A}=\mathbf{T}^{*} \mathbf{T}^{* \top}$ means we can write

$$
a_{h i}=\sum_{j=1}^{i} t_{h j}^{*} t_{i j}^{*} \quad \text { for } h \geq i
$$

Then we have

$$
\frac{\partial a_{h i}}{\partial t_{k l}^{*}}=0 \quad \text { for } k>h ; \text { or } k=h, l>i
$$

that is, $\partial a_{h i} / \partial t_{k l}^{*}=0$ if k, l, is beyond h, i in the lexicographic ordering. The Jacobian matrix of the transformation from \mathbf{A} to \mathbf{T}^{*} is a lower triangular matrix with diagonal elements

$$
\begin{aligned}
& \frac{\partial a_{h h}}{\partial t_{h h}^{*}}=2 t_{h h}^{*} \quad \text { for } \quad h=1, \ldots, p \\
& \frac{\partial a_{h i}}{\partial t_{h i}^{*}}=t_{i i}^{*} \quad \text { for } \quad h>i
\end{aligned}
$$

The determinant of the Jacobian matrix is therefore

$$
2^{p} \prod_{i=1}^{p} t_{i i}^{* p+1-i}
$$

The Jacobian of the transformation from \mathbf{T}^{*} to \mathbf{A} is the reciprocal. Hence, the desnity of \mathbf{A} is

$$
\begin{aligned}
& \frac{\prod_{i=1}^{p} t_{i i}^{*} n-i}{} \quad \begin{array}{l}
2^{\frac{p(n-2)}{2}} \pi^{\frac{p(p-1)}{4}}(\operatorname{det}(\boldsymbol{\Sigma}))^{\frac{n}{2}} \prod_{i=1}^{p} \Gamma\left(\frac{1}{2} \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \mathbf{A}\right)\right) \\
=
\end{array} \frac{\prod_{i=1}^{p} t_{i i}^{* n-p-1} \exp \left(-\frac{1}{2} \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \mathbf{A}\right)\right)}{\left.2^{\frac{p n}{2}} \pi^{\frac{p(p-1)}{4}}(\operatorname{det}(\boldsymbol{\Sigma}))^{\frac{n}{2}} \prod_{i=1}^{p} t_{i=1}^{p+1-i}\right)^{-1}} . \\
= & \frac{(\operatorname{det}(\mathbf{A}))^{\frac{n-p-1}{2}} \exp \left(-\frac{1}{2} \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \mathbf{A}\right)\right)}{2^{\frac{p n}{2}} \pi^{\frac{p(p-1)}{4}}(\operatorname{det}(\boldsymbol{\Sigma}))^{\frac{n}{2}} \prod_{i=1}^{p} \Gamma\left(\frac{1}{2}(n+1-i)\right)} .
\end{aligned}
$$

Corollary 6.1. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ be independently distributed, each according to $\mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $N>p$. Then the distribution of $\mathbf{S}=\frac{1}{n} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top}$ is $\mathcal{W}\left(\frac{1}{n} \boldsymbol{\Sigma}, n\right)$.

Proof. The matrix \mathbf{S} has the distribution of

$$
\mathbf{S}=\sum_{\alpha=1}^{n} \frac{\mathbf{z}_{\alpha}}{\sqrt{n}}\left(\frac{\mathbf{z}_{\alpha}}{\sqrt{n}}\right)^{\top}
$$

where each $\frac{\mathbf{z}_{1}}{\sqrt{n}}, \ldots, \frac{\mathbf{z}_{n}}{\sqrt{n}}$ are independently distributed, each according to $\mathcal{N}\left(\mathbf{0}, \frac{1}{n} \boldsymbol{\Sigma}\right)$. Theorem 6.2 implies this corollary.

Lemma 6.1. Given \mathbf{B} positive semidefinite and \mathbf{A} positive definite, there exists a non-singular matrix \mathbf{F} such that $\mathbf{F}^{\top} \mathbf{B F}=\mathbf{D}$ and $\mathbf{F}^{\top} \mathbf{A F}=\mathbf{I}$, where \mathbf{D} is diagonal.

Proof. Let the spectral decomposition of \mathbf{A} be $\mathbf{A}=\mathbf{U}_{\mathbf{A}} \boldsymbol{\Sigma}_{\mathbf{A}} \mathbf{U}_{\mathbf{A}}^{\top}$ and $\mathbf{E}=\mathbf{U}_{\mathbf{A}} \boldsymbol{\Sigma}_{\mathbf{A}}^{-\frac{1}{2}}$, then $\mathbf{E}^{\top} \mathbf{A} \mathbf{E}=\mathbf{I}$. Let the spectral decomposition of $\mathbf{B}^{*}=\mathbf{E}^{\top} \mathbf{B E}$ be $\mathbf{B}^{*}=\mathbf{U}_{\mathbf{B}^{*}} \boldsymbol{\Sigma}_{\mathbf{B}^{*}} \mathbf{U}_{\mathbf{B}^{*}}^{\top}$, then

$$
\boldsymbol{\Sigma}_{\mathbf{B}^{*}}=\mathbf{U}_{\mathbf{B}^{*}}^{\top} \mathbf{B}^{*} \mathbf{U}_{\mathbf{B}^{*}}=\mathbf{U}_{\mathbf{B}^{*}}^{\top} \mathbf{E}^{\top} \mathbf{B E} \mathbf{U}_{\mathbf{B}^{*}}
$$

Letting $\mathbf{F}=\mathbf{E U}_{\mathbf{B}^{*}}$ and $\mathbf{D}=\boldsymbol{\Sigma}_{\mathbf{B}^{*}}$ proves this lemma.
Lemma 6.2. The characteristic function of chi-square distribution with the degree of freedom n is

$$
\phi(t)=(1-2 \mathrm{i} t)^{-\frac{n}{2}} .
$$

Proof. Let x be distributed according to χ^{2}-distribution with the degree of freedom n, then its density is

$$
f(x)=\frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} x^{\frac{n}{2}-1} \exp \left(-\frac{x}{2}\right)
$$

We have (using the density of χ^{2}-distribution with the degree of freedom $2 k+n$)

$$
\begin{aligned}
\phi(t) & =\mathbb{E}[\exp (\mathrm{i} t x)] \\
& =\int_{0}^{+\infty} \exp (\mathrm{i} t x) \cdot \frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} x^{\frac{n}{2}-1} \exp \left(-\frac{x}{2}\right) \mathrm{d} x \\
& =\frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} \int_{0}^{+\infty}\left(\sum_{k=0}^{\infty} \frac{(\mathrm{i} t x)^{k}}{k!}\right) x^{\frac{n}{2}-1} \exp \left(-\frac{x}{2}\right) \mathrm{d} x \\
& =\frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} \sum_{k=0}^{\infty} \frac{(\mathrm{i} t)^{k}}{k!} \int_{0}^{+\infty} x^{k+\frac{n}{2}-1} \exp \left(-\frac{x}{2}\right) \mathrm{d} x \\
& =\frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} \sum_{k=0}^{\infty} \frac{(\mathrm{i} t)^{k}}{k!} \cdot 2^{k+\frac{n}{2}} \Gamma\left(k+\frac{n}{2}\right) \int_{0}^{+\infty} \frac{1}{2^{k+\frac{n}{2}} \Gamma\left(k+\frac{n}{2}\right)} x^{k+\frac{n}{2}-1} \exp \left(-\frac{x}{2}\right) \mathrm{d} x \\
& =\frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} \sum_{k=0}^{\infty} \frac{(\mathrm{i} t)^{k}}{k!} \cdot 2^{k+\frac{n}{2}} \Gamma\left(k+\frac{n}{2}\right) \\
& =1+\sum_{k=1}^{\infty} \frac{(2 \mathrm{i} t)^{k}}{k!} \cdot \prod_{j=0}^{k-1}\left(j+\frac{n}{2}\right) \\
& =(1-2 \mathrm{i} t)^{-\frac{n}{2}} .
\end{aligned}
$$

For the last step, we consider Taylor expansion on $f(x)=(1-x)^{-\frac{n}{2}}$ at $x=0$, that is

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{\prime}(0) x^{k}}{k!}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!} \prod_{j=0}^{k-1}\left(j+\frac{n}{2}\right) .
$$

We take $x=2 \mathrm{i} t$.

Theorem 6.3. If $\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}$ are independent, each with distribution $\mathcal{N}_{p}(\mathbf{0}, \boldsymbol{\Sigma})$, then the characteristic function of $a_{11}, \ldots, a_{p p}, 2 a_{12}, \ldots, 2 a_{p-1, p}$, where $a_{i j}$ is the (i, j)-th element of

$$
\mathbf{A}=\sum_{\alpha=1}^{n} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}
$$

is given by $\mathbb{E}[\exp (\operatorname{itr}(\mathbf{A} \boldsymbol{\Theta}))]=(\operatorname{det}(\mathbf{I}-2 \mathrm{i} \boldsymbol{\Theta} \boldsymbol{\Sigma}))^{-\frac{n}{2}}$, where $\boldsymbol{\Theta} \in \mathbb{R}^{p \times p}$ is symmetric.
Proof. The characteristic function of $a_{11}, \ldots, a_{p p}, 2 a_{12}, \ldots, 2 a_{p-1, p}$ is

$$
\begin{aligned}
& \mathbb{E}[\exp (\mathrm{i} \operatorname{tr}(\mathbf{A} \boldsymbol{\Theta}))] \\
= & \mathbb{E}\left[\exp \left(\mathrm{i} \operatorname{tr}\left(\sum_{\alpha=1}^{n} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} \boldsymbol{\Theta}\right)\right)\right] \\
= & \mathbb{E}\left[\exp \left(\mathrm{i} \operatorname{tr}\left(\sum_{\alpha=1}^{n} \mathbf{z}_{\alpha}^{\top} \boldsymbol{\Theta} \mathbf{z}_{\alpha}\right)\right)\right] \\
= & \mathbb{E}\left[\exp \left(\mathrm{i} \sum_{\alpha=1}^{n} \mathbf{z}_{\alpha}^{\top} \boldsymbol{\Theta} \mathbf{z}_{\alpha}\right)\right] \\
= & \prod_{\alpha=1}^{n} \mathbb{E}\left[\exp \left(\mathrm{i} \mathbf{z}_{\alpha}^{\top} \boldsymbol{\Theta} \mathbf{z}_{\alpha}\right)\right] \\
= & \left(\mathbb{E}\left[\exp \left(\mathrm{i} \mathbf{z}^{\top} \mathbf{\Theta} \mathbf{z}\right)\right]\right)^{n},
\end{aligned}
$$

where $\mathbf{z} \sim \mathcal{N}_{p}(\mathbf{0}, \boldsymbol{\Sigma})$. Lemma 6.1 means there exists non-singular matrix \mathbf{F} such that

$$
\mathbf{F}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{F}=\mathbf{I} \quad \text { and } \quad \mathbf{F}^{\top} \boldsymbol{\Theta} \mathbf{F}=\mathbf{D}
$$

where $\mathbf{D} \in \mathbb{R}^{p \times p}$ is diagonal. If we set $\mathbf{z}=\mathbf{F y}$, then

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left(\mathrm{i} \mathbf{z}^{\top} \mathbf{\Theta} \mathbf{z}\right)\right] \\
= & \mathbb{E}\left[\exp \left(\mathrm{i} \mathbf{y}^{\top} \mathbf{F}^{\top} \mathbf{\Theta F} \mathbf{F}\right)\right] \\
= & \mathbb{E}\left[\exp \left(\mathrm{i} \mathbf{y}^{\top} \mathbf{D} \mathbf{y}\right)\right] \\
= & \mathbb{E}\left[\prod_{j=1}^{p} \exp \left(\mathrm{i} d_{j j} y_{j}^{2}\right)\right] \\
= & \prod_{j=1}^{p} \mathbb{E}\left[\exp \left(\mathrm{i} d_{j j} y_{j}^{2}\right)\right] .
\end{aligned}
$$

Note that the term of $\mathbb{E}\left[\exp \left(\mathrm{i} d_{j j} y_{j}^{2}\right)\right]$ is the characteristic function of the χ^{2}-distribution with one degree of freedom, namely $\left(1-2 \mathrm{i} d_{j j}\right)^{-\frac{1}{2}}$. Thus, we have

$$
\mathbb{E}\left[\exp \left(\mathrm{i} \mathbf{z}^{\top} \mathbf{\Theta} \mathbf{z}\right)\right]=\prod_{j=1}^{p}\left(1-2 \mathrm{i} d_{j j}\right)^{-\frac{1}{2}}=(\operatorname{det}(\mathbf{I}-2 \mathrm{i} \mathbf{D}))^{-\frac{1}{2}}
$$

We also have

$$
\begin{aligned}
& \operatorname{det}(\mathbf{I}-2 \mathrm{i} \mathbf{D}) \\
= & \operatorname{det}\left(\mathbf{F}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{F}-2 \mathrm{i} \mathbf{F}^{\top} \boldsymbol{\Theta} \mathbf{F}\right) \\
= & \operatorname{det}\left(\mathbf{F}^{\top}\left(\boldsymbol{\Sigma}^{-1}-2 \mathrm{i} \boldsymbol{\Theta}\right) \mathbf{F}\right) \\
= & (\operatorname{det}(\mathbf{F}))^{2} \operatorname{det}\left(\boldsymbol{\Sigma}^{-1}-2 \mathrm{i} \boldsymbol{\Theta}\right)
\end{aligned}
$$

and $\mathbf{F}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{F}=\mathbf{I}$ means $\operatorname{det}(\mathbf{F})=(\operatorname{det}(\boldsymbol{\Sigma}))^{\frac{1}{2}}$. Combing the above results, we obtain

$$
\operatorname{det}(\mathbf{I}-2 \mathrm{i} \mathbf{D})=\operatorname{det}(\boldsymbol{\Sigma}) \operatorname{det}\left(\boldsymbol{\Sigma}^{-1}-2 \mathrm{i} \boldsymbol{\Theta}\right)=\operatorname{det}(\mathbf{I}-2 \mathrm{i} \boldsymbol{\Theta} \boldsymbol{\Sigma})
$$

and

$$
\mathbb{E}[\exp (\mathrm{i} \operatorname{tr}(\mathbf{A} \boldsymbol{\Theta}))]=(\operatorname{det}(\mathbf{I}-2 \mathrm{i} \boldsymbol{\Theta} \boldsymbol{\Sigma}))^{-\frac{n}{2}}
$$

Theorem 6.4. Let \mathbf{A} and $\boldsymbol{\Sigma}$ be partitioned into q and $p-q$ rows and columns,

$$
\mathbf{A}=\left[\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{A}_{21} & \mathbf{A}_{22}
\end{array}\right], \quad \boldsymbol{\Sigma}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right]
$$

If \mathbf{A} is distributed according to $\mathcal{W}(\boldsymbol{\Sigma}, n)$, then \mathbf{A}_{11} is distributed according to $\mathcal{W}\left(\boldsymbol{\Sigma}_{11}, n\right)$.
Proof. The assumption means \mathbf{A} is distributed as $\mathbf{A}=\sum_{\alpha=1}^{n} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$, where the \mathbf{z}_{α} are independent, each with the distribution $\mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$. Partition \mathbf{z}_{α} into subvectors of q and $p-q$ components such that

$$
\mathbf{z}_{\alpha}=\left[\begin{array}{l}
\mathbf{z}_{\alpha}^{(1)} \\
\mathbf{z}_{\alpha}^{(2)}
\end{array}\right]
$$

Then $\mathbf{z}_{1}^{(1)}, \ldots, \mathbf{z}_{\alpha}^{(n)}$ are independent, each with the distribution $\mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{11}\right)$, and \mathbf{A}_{11} is distributed as

$$
\sum_{\alpha=1}^{n} \mathbf{z}_{\alpha}^{(1)}\left(\mathbf{z}_{\alpha}^{(1)}\right)^{\top}
$$

which has the distribution $\mathcal{W}\left(\boldsymbol{\Sigma}_{11}, n\right)$.
Theorem 6.5. Let \mathbf{A} and $\boldsymbol{\Sigma}$ be partitioned into p_{1}, \ldots, p_{q} rows and columns with $p=p_{1}, \ldots, p_{q}$,

$$
\mathbf{A}=\left[\begin{array}{ccc}
\mathbf{A}_{11} & \cdots & \mathbf{A}_{1 q} \\
\vdots & \ddots & \vdots \\
\mathbf{A}_{q 1} & \cdots & \mathbf{A}_{q q}
\end{array}\right], \quad \boldsymbol{\Sigma}=\left[\begin{array}{ccc}
\boldsymbol{\Sigma}_{11} & \cdots & \boldsymbol{\Sigma}_{1 q} \\
\vdots & \ddots & \vdots \\
\boldsymbol{\Sigma}_{q 1} & \cdots & \boldsymbol{\Sigma}_{q q}
\end{array}\right]
$$

If $\boldsymbol{\Sigma}=\mathbf{0}$ for $i \neq j$ and if $\mathbf{A} \sim \mathcal{W}(\boldsymbol{\Sigma}, n)$, then $\mathbf{A}_{11}, \ldots, \mathbf{A}_{q q}$ are independently distributed and $\mathbf{A}_{j j} \sim$ $\mathcal{W}\left(\boldsymbol{\Sigma}_{j j}, n\right)$ for $j=1, \ldots, q$.
Proof. The assumption means \mathbf{A} is distributed as $\mathbf{A}=\sum_{\alpha=1}^{n} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$, where the \mathbf{z}_{α} are independent, each with the distribution $\mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$. Partition \mathbf{z}_{α} into subvectors

$$
\mathbf{z}_{\alpha}=\left[\begin{array}{c}
\mathbf{z}_{\alpha}^{(1)} \\
\vdots \\
\mathbf{z}_{\alpha}^{(q)}
\end{array}\right]
$$

as \mathbf{A} and $\boldsymbol{\Sigma}$ be portioned. Since $\boldsymbol{\Sigma}_{i j}=\mathbf{0}$, the sets $\mathbf{z}_{1}^{(1)}, \ldots, \mathbf{z}_{n}^{(1)}, \ldots, \mathbf{z}_{1}^{(q)}, \ldots, \mathbf{z}_{n}^{(q)}$ are independent. Then $\mathbf{A}_{11}=\sum_{\alpha=1}^{n} \mathbf{z}_{\alpha}^{(1)}\left(\mathbf{z}_{\alpha}^{(1)}\right)^{\top}, \ldots, \mathbf{A}_{q q}=\sum_{\alpha=1}^{n} \mathbf{z}_{\alpha}^{(q)}\left(\mathbf{z}_{\alpha}^{(q)}\right)^{\top}$ are independent. The rest of the proof follows from Theorem 6.4.

Theorem 6.6. If $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ are independent, each with distribution $\mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cccc}
\sigma_{11} & 0 & \cdots & 0 \\
0 & \sigma_{22} & \cdots & \cdots \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_{p p}
\end{array}\right]
$$

then the density of the sample correlation coefficients is given by

$$
\frac{\left(\Gamma\left(\frac{n}{2}\right)\right)^{p}\left(\operatorname{det}\left(\left[r_{i j}\right]_{i j}\right)\right)^{\frac{n-p-1}{2}}}{\Gamma_{p}\left(\frac{n}{2}\right)}
$$

where $n=N-1$.
Proof. The density of \mathbf{A} is

$$
\frac{(\operatorname{det}(\mathbf{A}))^{\frac{n-p-1}{2}} \exp \left(-\frac{1}{2} \sum_{i=1}^{p} \frac{a_{i i}}{\sigma_{i i}}\right)}{2^{\frac{n p}{2}} \prod_{i=1}^{p} \sigma_{i i}^{\frac{n}{2}} \Gamma_{p}\left(\frac{n}{2}\right)}
$$

We consider the transformation

1. $a_{i j}=\sqrt{a_{i i}} \sqrt{a_{j j}} r_{i j}$ for $i<j$,
2. $a_{i i}=a_{i i}$ otherwise,
which is from

$$
\left\{r_{i j}: i<j, \quad i, j=1, \ldots, p\right\} \cup\left\{a_{i i}: i=1, \ldots, p\right\}
$$

to

$$
\left\{a_{i j}: i<j, \quad i, j=1, \ldots, p\right\} \cup\left\{a_{i i}: i=1, \ldots, p\right\}
$$

The determinant of Jacobian for this transformation is

$$
\prod_{i=1}^{p} \prod_{j=1}^{i-1} \sqrt{a_{i i}} \sqrt{a_{j j}}=\prod_{i=1}^{p} a_{i i}^{\frac{p-1}{2}}
$$

The joint density of $\left\{r_{i j}: i<j, \quad i, j=1, \ldots, p\right\} \cup\left\{a_{i i}: i=1, \ldots, p\right\}$ is

$$
\begin{aligned}
& \frac{\left(\operatorname{det}\left(\left[\sqrt{a_{i i}} \sqrt{a_{j j}} r_{i j}\right]_{i j}\right)\right)^{\frac{n-p-1}{2}} \exp \left(-\frac{1}{2} \sum_{i=1}^{p} \frac{a_{i i}}{\sigma_{i i}}\right)}{2^{\frac{n p}{2}} \prod_{i=1}^{p} \sigma_{i i}^{\frac{n}{2}} \Gamma_{p}\left(\frac{n}{2}\right)} \cdot \prod_{i=1}^{p} a_{i i}^{\frac{p-1}{2}} \\
= & \frac{\left(\prod_{i=1}^{p} a_{i i}\right)^{\frac{n-p-1}{2}}\left(\operatorname{det}\left(\left[r_{i j}\right]_{i j}\right)\right)^{\frac{n-p-1}{2}} \exp \left(-\frac{1}{2} \sum_{i=1}^{p} \frac{a_{i i}}{\sigma_{i i}}\right)}{2^{\frac{n p}{2}} \prod_{i=1}^{p} \sigma_{i i}^{\frac{n}{2}} \Gamma_{p}\left(\frac{n}{2}\right)} \cdot \prod_{i=1}^{p} a_{i i}^{\frac{p-1}{2}} \\
= & \frac{\left(\operatorname{det}\left(\left[r_{i j}\right]_{i j}\right)\right)^{\frac{n-p-1}{2}}}{\Gamma_{p}\left(\frac{n}{2}\right)} \cdot \prod_{i=1}^{p} \frac{a_{i i}^{\frac{n}{2}-1} \exp \left(-\frac{a_{i i}}{2 \sigma_{i i}}\right)}{2^{\frac{n}{2}} \sigma_{i i}^{\frac{n}{2}}},
\end{aligned}
$$

where $r_{i i}=1$. Let $u_{i}=a_{i i} /\left(2 \sigma_{i i}\right)$, then

$$
\int_{0}^{\infty} \frac{a_{i i}^{\frac{n}{2}-1} \exp \left(-\frac{a_{i i}}{2 \sigma_{i i}}\right)}{2^{\frac{n}{2}} \sigma_{i i}^{\frac{n}{2}}} \mathrm{~d} a_{i i}=\int_{0}^{\infty} u_{i}^{\frac{n}{2}-1} \exp \left(-u_{i}\right) \mathrm{d} u_{i}=\Gamma\left(\frac{n}{2}\right)
$$

Combing all above results proves this theorem.
Theorem 6.7. If \mathbf{A} has the distribution $\mathcal{W}(\boldsymbol{\Sigma}, n)$ and $\boldsymbol{\Sigma}$ has the a prior distribution $\mathcal{W}^{-1}(\boldsymbol{\Psi}, m)$, then the conditional distribution of $\boldsymbol{\Sigma}$ given \mathbf{A} is the inverted Wishart distribution $\mathcal{W}^{-1}(\mathbf{A}+\boldsymbol{\Psi}, n+m)$.

Proof. The joint density of \mathbf{A} and $\boldsymbol{\Sigma}$,

$$
\begin{align*}
f(\mathbf{A}, \boldsymbol{\Sigma}) & =\frac{(\operatorname{det}(\mathbf{A}))^{\frac{n-p-1}{2}} \exp \left(-\frac{1}{2} \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \mathbf{A}\right)\right)}{2^{\frac{n p}{2}}(\operatorname{det}(\boldsymbol{\Sigma}))^{\frac{n}{2}} \Gamma_{p}\left(\frac{n}{2}\right)} \cdot \frac{(\operatorname{det}(\boldsymbol{\Psi}))^{\frac{m}{2}}(\operatorname{det}(\boldsymbol{\Sigma}))^{-\frac{m p+p+1}{2}} \exp \left(-\frac{1}{2} \operatorname{tr}\left(\boldsymbol{\Psi} \boldsymbol{\Sigma}^{-1}\right)\right)}{2^{\frac{m p}{2}} \Gamma_{p}\left(\frac{m}{2}\right)} \tag{14}\\
& =\frac{(\operatorname{det}(\boldsymbol{\Psi}))^{\frac{m}{2}}(\operatorname{det}(\boldsymbol{\Sigma}))^{-\frac{n+m+p+1}{2}}(\operatorname{det}(\mathbf{A}))^{\frac{n-p-1}{2}} \exp \left(-\frac{1}{2} \operatorname{tr}\left((\mathbf{A}+\boldsymbol{\Psi}) \boldsymbol{\Sigma}^{-1}\right)\right)}{2^{\frac{(m+n) p}{2}} \Gamma_{p}\left(\frac{n}{2}\right) \Gamma_{p}\left(\frac{m}{2}\right)}
\end{align*}
$$

for \mathbf{A} and $\boldsymbol{\Sigma}$ are positive definite. The marginal density of \mathbf{A} is the integral of (14) over the set of $\boldsymbol{\Sigma}$ positive definite. Since

$$
\begin{aligned}
1 & =\int w^{-1}(\boldsymbol{\Sigma} \mid \mathbf{A}+\boldsymbol{\Psi}, n+m) \mathrm{d} \boldsymbol{\Sigma} \\
& =\int \frac{(\operatorname{det}(\mathbf{A}+\boldsymbol{\Psi}))^{\frac{n+m}{2}}(\operatorname{det}(\boldsymbol{\Sigma}))^{-\frac{n+m+p+1}{2}} \exp \left(-\frac{1}{2} \operatorname{tr}\left((\mathbf{A}+\boldsymbol{\Psi}) \boldsymbol{\Sigma}^{-1}\right)\right)}{2^{\frac{(m+n) p}{2}} \Gamma_{p}\left(\frac{n+m}{2}\right)}
\end{aligned}
$$

we have

$$
\begin{aligned}
f(\mathbf{A}) & =\int f(\mathbf{A}, \boldsymbol{\Sigma}) \mathrm{d} \boldsymbol{\Sigma} \\
& =\frac{(\operatorname{det}(\boldsymbol{\Psi}))^{\frac{m}{2}}(\operatorname{det}(\mathbf{A}))^{\frac{n-p-1}{2}}}{\Gamma_{p}\left(\frac{n}{2}\right) \Gamma_{p}\left(\frac{m}{2}\right)} \int \frac{(\operatorname{det}(\boldsymbol{\Sigma}))^{-\frac{n+m+p+1}{2}} \exp \left(-\frac{1}{2} \operatorname{tr}\left((\mathbf{A}+\boldsymbol{\Psi}) \boldsymbol{\Sigma}^{-1}\right)\right)}{2^{\frac{(m+n) p}{2}}} \mathrm{~d} \boldsymbol{\Sigma} \\
& =\frac{(\operatorname{det}(\boldsymbol{\Psi}))^{\frac{m}{2}}(\operatorname{det}(\mathbf{A}))^{\frac{n-p-1}{2}}}{\Gamma_{p}\left(\frac{n}{2}\right) \Gamma_{p}\left(\frac{m}{2}\right)} \cdot \Gamma_{p}\left(\frac{n+m}{2}\right)(\operatorname{det}(\mathbf{A}+\boldsymbol{\Psi}))^{-\frac{n+m}{2}} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& f(\boldsymbol{\Sigma} \mid \mathbf{A})=\frac{f(\boldsymbol{\Sigma}, \mathbf{A})}{f(\mathbf{A})} \\
= & \frac{(\operatorname{det}(\mathbf{A}+\boldsymbol{\Psi}))^{\frac{n+m}{2}}(\operatorname{det}(\boldsymbol{\Sigma}))^{-\frac{n+m+p+1}{2}} \exp \left(-\frac{1}{2} \operatorname{tr}\left((\mathbf{A}+\boldsymbol{\Psi}) \boldsymbol{\Sigma}^{-1}\right)\right)}{2^{\frac{(m+n) p}{2}} \Gamma_{p}\left(\frac{n+m}{2}\right)} \\
= & w^{-1}(\boldsymbol{\Sigma} \mid \mathbf{A}+\boldsymbol{\Psi}, n+m) .
\end{aligned}
$$

7 Multivariate Linear Regression

Lemma 7.1. If $\mathbf{A} \in \mathbb{R}^{p \times p}$ and $\mathbf{G} \in \mathbb{R}^{p \times p}$ are positive definite, then $\operatorname{tr}\left(\mathbf{F A F}^{\top} \mathbf{G}\right)>0$ for non-zero $\mathbf{F} \in \mathbb{R}^{p \times p}$. Proof. Let $\mathbf{A}=\mathbf{H H}^{\top}$ and $\mathbf{G}=\mathbf{K K}^{\top}$, then

$$
\begin{aligned}
& \operatorname{tr}\left(\mathbf{F A} \mathbf{F}^{\top} \mathbf{G}\right) \\
= & \operatorname{tr}\left(\mathbf{F} \mathbf{H H}^{\top} \mathbf{F}^{\top} \mathbf{K} \mathbf{K}^{\top}\right) \\
= & \operatorname{tr}\left(\mathbf{H}^{\top} \mathbf{F}^{\top} \mathbf{K} \mathbf{K}^{\top} \mathbf{F H}\right) \\
= & \operatorname{tr}\left(\mathbf{H}^{\top} \mathbf{F}^{\top} \mathbf{G} \mathbf{F H}\right)>0 .
\end{aligned}
$$

Theorem 7.1. If \mathbf{x}_{α} is an observation from $\mathcal{N}_{q}\left(\mathbf{B} \mathbf{z}_{\alpha}, \boldsymbol{\Sigma}\right)$ for $\alpha=1, \ldots, N$, where $\left[\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right] \in \mathbb{R}^{N \times q}$ of rank q is given, $\boldsymbol{\Sigma} \in \mathbb{R}^{q \times q}, \mathbf{B} \in \mathbb{R}^{p \times q}$ and $N \geq p+q$, the maximum likelihood estimator of \mathbf{B} is given by $\hat{\mathbf{B}}=\mathbf{C A}^{-1}$ where

$$
\mathbf{C}=\sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{z}_{\alpha}^{\top} \quad \text { and } \quad \mathbf{A}=\sum_{\alpha=1}^{N} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}
$$

The maximum likelihood estimator of $\boldsymbol{\Sigma}$ is give by

$$
\hat{\boldsymbol{\Sigma}}=\frac{1}{N} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\hat{\mathbf{B}} \mathbf{z}_{\alpha}\right)\left(\mathbf{x}_{\alpha}-\hat{\mathbf{B}} \mathbf{z}_{\alpha}\right)^{\top}
$$

Proof. The likelihood function is

$$
L=\frac{1}{(2 \pi)^{\frac{N}{2}}(\operatorname{det}(\boldsymbol{\Sigma}))^{\frac{N}{2}}} \exp \left(-\frac{1}{2} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)\right)
$$

Recall that in the maximum likelihood estimation for normal distribution, we use the fact

$$
\sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}\right)=\operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}\right)\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}\right)^{\top}\right)
$$

and

$$
\begin{aligned}
& \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}\right)\left(\mathbf{x}_{\alpha}-\boldsymbol{\mu}\right)^{\top} \\
= & \sum_{\alpha=1}^{N}\left(\left(\mathbf{x}_{\alpha}-\overline{\boldsymbol{\mu}}\right)\left(\mathbf{x}_{\alpha}-\overline{\boldsymbol{\mu}}\right)^{\top}+\left(\mathbf{x}_{\alpha}-\overline{\boldsymbol{\mu}}\right)(\overline{\boldsymbol{\mu}}-\boldsymbol{\mu})^{\top}+(\overline{\boldsymbol{\mu}}-\boldsymbol{\mu})\left(\mathbf{x}_{\alpha}-\overline{\boldsymbol{\mu}}\right)^{\top}+(\overline{\boldsymbol{\mu}}-\boldsymbol{\mu})(\overline{\boldsymbol{\mu}}-\boldsymbol{\mu})^{\top}\right) \\
= & \sum_{\alpha=1}^{N}\left(\left(\mathbf{x}_{\alpha}-\overline{\boldsymbol{\mu}}\right)\left(\mathbf{x}_{\alpha}-\overline{\boldsymbol{\mu}}\right)^{\top}+(\overline{\boldsymbol{\mu}}-\boldsymbol{\mu})(\overline{\boldsymbol{\mu}}-\boldsymbol{\mu})^{\top}\right) .
\end{aligned}
$$

We shall do the similar thing for the exponential in L. We have

$$
\sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)=\operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)\left(\mathbf{x}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)^{\top}\right)
$$

and for any $\mathbf{H} \in \mathbb{R}^{p \times q}$, it holds that

$$
\begin{aligned}
& \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)\left(\mathbf{x}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)^{\top} \\
= & \sum_{\alpha=1}^{N}\left(\left(\mathbf{x}_{\alpha}-\mathbf{H} \mathbf{z}_{\alpha}\right)\left(\mathbf{x}_{\alpha}-\mathbf{H} \mathbf{z}_{\alpha}\right)^{\top}+\left(\mathbf{x}_{\alpha}-\mathbf{H} \mathbf{z}_{\alpha}\right)\left(\mathbf{H} \mathbf{z}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)^{\top}+\left(\mathbf{H} \mathbf{z}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)\left(\mathbf{x}_{\alpha}-\mathbf{H} \mathbf{z}_{\alpha}\right)^{\top}\right. \\
& \left.+\left(\mathbf{H} \mathbf{z}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)\left(\mathbf{H} \mathbf{z}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)^{\top}\right) .
\end{aligned}
$$

We hope

$$
\sum_{\alpha=1}^{N}\left(\mathbf{H} \mathbf{z}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)\left(\mathbf{x}_{\alpha}-\mathbf{H} \mathbf{z}_{\alpha}\right)^{\top}=\sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\mathbf{H} \mathbf{z}_{\alpha}\right)\left(\mathbf{H} \mathbf{z}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)^{\top}=\mathbf{0}
$$

Hence, we select $\mathbf{H}=\hat{\mathbf{H}}$ as follows

$$
\begin{aligned}
& \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\hat{\mathbf{H}} \mathbf{z}_{\alpha}\right)\left(\hat{\mathbf{H}} \mathbf{z}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)^{\top}=\mathbf{0} \\
\Longleftarrow & \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\hat{\mathbf{H}} \mathbf{z}_{\alpha}\right) \mathbf{z}_{\alpha}^{\top}(\hat{\mathbf{H}}-\mathbf{B})^{\top}=\mathbf{0}
\end{aligned}
$$

$$
\begin{aligned}
& \Longleftarrow \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\hat{\mathbf{H}} \mathbf{z}_{\alpha}\right) \mathbf{z}_{\alpha}^{\top}=\mathbf{0} \\
& \Longleftarrow \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{z}_{\alpha}^{\top}=\hat{\mathbf{H}} \sum_{\alpha=1}^{N} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} \\
& \Longleftarrow \hat{\mathbf{H}}=\sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{z}_{\alpha}^{\top}\left(\sum_{\alpha=1}^{N} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}\right)^{-1} .
\end{aligned}
$$

Then we have

$$
\sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)\left(\mathbf{x}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)^{\top}=\sum_{\alpha=1}^{N}\left(\left(\mathbf{x}_{\alpha}-\hat{\mathbf{H}} \mathbf{z}_{\alpha}\right)\left(\mathbf{x}_{\alpha}-\hat{\mathbf{H}} \mathbf{z}_{\alpha}\right)^{\top}+\left(\hat{\mathbf{H}} \mathbf{z}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)\left(\hat{\mathbf{H}} \mathbf{z}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)^{\top}\right)
$$

Lemma 7.1 means

$$
\begin{aligned}
& \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)\left(\mathbf{x}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)^{\top}\right) \\
= & \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \sum_{\alpha=1}^{N}\left(\left(\mathbf{x}_{\alpha}-\hat{\mathbf{H}} \mathbf{z}_{\alpha}\right)\left(\mathbf{x}_{\alpha}-\hat{\mathbf{H}} \mathbf{z}_{\alpha}\right)^{\top}+\left(\hat{\mathbf{H}} \mathbf{z}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)\left(\hat{\mathbf{H}} \mathbf{z}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)^{\top}\right)\right) \\
\geq & \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\hat{\mathbf{H}} \mathbf{z}_{\alpha}\right)\left(\mathbf{x}_{\alpha}-\hat{\mathbf{H}} \mathbf{z}_{\alpha}\right)^{\top}\right)
\end{aligned}
$$

where the equality holds by taking $\mathbf{B}=\hat{\mathbf{H}}$. Hence, the maximum likelihood estimator of \mathbf{B} is given by $\hat{\mathbf{B}}=\mathbf{C A}^{-1}$. Using Lemma 3.1 with $\mathbf{G}=\boldsymbol{\Sigma}$ and

$$
\mathbf{D}=\sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\hat{\mathbf{B}} \mathbf{z}_{\alpha}\right)\left(\mathbf{x}_{\alpha}-\hat{\mathbf{B}} \mathbf{z}_{\alpha}\right)^{\top}
$$

we obtain the the maximum likelihood estimator of $\boldsymbol{\Sigma}$ is $\hat{\boldsymbol{\Sigma}}=\frac{1}{N} \mathbf{D}$.
Remark 7.1. Let

$$
\mathbf{X}=\left[\begin{array}{c}
\mathbf{x}_{1}^{\top} \\
\vdots \\
\mathbf{x}_{N}^{\top}
\end{array}\right] \quad \text { and } \quad \mathbf{Z}=\left[\begin{array}{c}
\mathbf{z}_{1}^{\top} \\
\vdots \\
\mathbf{z}_{N}^{\top}
\end{array}\right]
$$

We consider the least square problem.

$$
\min _{\mathbf{B} \in \mathbb{R}^{p \times q}} f(\mathbf{B}) \triangleq \frac{1}{2}\left\|\mathbf{B} \mathbf{Z}^{\top}-\mathbf{X}^{\top}\right\|_{F}^{2}
$$

Then, taking the gradient of f be zero means

$$
\nabla f(\mathbf{B})=\frac{\partial}{\partial \mathbf{B}} \operatorname{tr}\left(\frac{1}{2} \mathbf{B} \mathbf{Z}^{\top} \mathbf{Z} \mathbf{B}^{\top}-\mathbf{B} \mathbf{Z}^{\top} \mathbf{X}+\frac{1}{2} \mathbf{X}^{\top} \mathbf{X}\right)=\mathbf{B} \mathbf{Z} \mathbf{Z}^{\top}-\mathbf{X}^{\top} \mathbf{Z}=\mathbf{0}
$$

Hence, we have $\mathbf{B}=\mathbf{X}^{\top} \mathbf{Z}\left(\mathbf{Z} \mathbf{Z}^{\top}\right)^{-1}=\mathbf{C A}^{-1}=\hat{\mathbf{B}}$.
Remark 7.2. The proof means

$$
\sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)\left(\mathbf{x}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)^{\top}
$$

$$
\begin{aligned}
& =\sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\hat{\mathbf{B}} \mathbf{z}_{\alpha}\right)\left(\mathbf{x}_{\alpha}-\hat{\mathbf{B}} \mathbf{z}_{\alpha}\right)^{\top}+\sum_{\alpha=1}^{N}\left(\hat{\mathbf{B}} \mathbf{z}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)\left(\hat{\mathbf{B}} \mathbf{z}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)^{\top} \\
& =N \hat{\boldsymbol{\Sigma}}+(\hat{\mathbf{B}}-\mathbf{B})\left(\sum_{\alpha=1}^{N} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}\right)(\hat{\mathbf{B}}-\mathbf{B})^{\top} \\
& =N \hat{\boldsymbol{\Sigma}}+(\hat{\mathbf{B}}-\mathbf{B}) \mathbf{A}(\hat{\mathbf{B}}-\mathbf{B})^{\top}
\end{aligned}
$$

Hence, the joint density of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ can be written as

$$
\begin{aligned}
& \frac{1}{(2 \pi)^{\frac{N}{2}}(\operatorname{det}(\boldsymbol{\Sigma}))^{\frac{N}{2}}} \exp \left(-\frac{1}{2} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)\right) \\
= & \frac{1}{(2 \pi)^{\frac{N}{2}}(\operatorname{det}(\boldsymbol{\Sigma}))^{\frac{N}{2}}} \exp \left(-\frac{1}{2} \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)\left(\mathbf{x}_{\alpha}-\mathbf{B} \mathbf{z}_{\alpha}\right)^{\top}\right)\right) \\
= & \frac{1}{(2 \pi)^{\frac{N}{2}}(\operatorname{det}(\boldsymbol{\Sigma}))^{\frac{N}{2}}} \exp \left(-\frac{1}{2} \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1}\left(N \hat{\boldsymbol{\Sigma}}+(\hat{\mathbf{B}}-\mathbf{B}) \mathbf{A}(\hat{\mathbf{B}}-\mathbf{B})^{\top}\right)\right)\right),
\end{aligned}
$$

which implies $\hat{\mathbf{B}}$ and $\hat{\boldsymbol{\Sigma}}$ form a sufficient set statistics for \mathbf{B} and $\boldsymbol{\Sigma}$.
Theorem 7.2. The maximum likelihood estimator \mathbf{B} based on a set of N observations, the α-th from $\mathcal{N}\left(\mathbf{B} \mathbf{z}_{\alpha}, \boldsymbol{\Sigma}\right)$, is normally distributed with mean \mathbf{B}, and the covariance matrix of the i-th and j-th rows of $\hat{\mathbf{B}}$ is $\sigma_{i j} \mathbf{A}^{-1}$, where $\mathbf{A}=\sum_{\alpha=1}^{N} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$. The maximum likelihood estimator $\hat{\boldsymbol{\Sigma}}$ multiplied by N is independently distributed according to $\mathcal{W}(\mathbf{\Sigma}, N-q)$, where q is the number of components of \mathbf{z}_{α}.

Proof. For the estimator $\hat{\mathbf{B}}$, we have

$$
\mathbb{E}[\hat{\mathbf{B}}]=\mathbb{E}\left[\sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{z}_{\alpha}^{\top} \mathbf{A}^{-1}\right]=\sum_{\alpha=1}^{N} \mathbf{B} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} \mathbf{A}^{-1}=\mathbf{B}\left(\sum_{\alpha=1}^{N} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}\right) \mathbf{A}^{-1}=\mathbf{B}
$$

and

$$
\begin{aligned}
& \mathbb{E}\left[\left(\hat{\boldsymbol{\beta}}_{i}-\boldsymbol{\beta}_{i}\right)\left(\hat{\boldsymbol{\beta}}_{j}-\boldsymbol{\beta}_{j}\right)^{\top}\right] \\
= & \mathbf{A}^{-1} \mathbb{E}\left[\sum_{\alpha=1}^{N}\left(x_{i \alpha}-\mathbb{E}\left[x_{i \alpha}\right]\right) \mathbf{z}_{\alpha} \sum_{\gamma=1}^{N}\left(x_{j \gamma}-\mathbb{E}\left[x_{j \gamma}\right]\right) \mathbf{z}_{\gamma}^{\top}\right] \mathbf{A}^{-1} \\
= & \mathbf{A}^{-1} \sum_{\alpha=1}^{N} \sum_{\gamma=1}^{N} \mathbb{E}\left[\left(x_{i \alpha}-\mathbb{E}\left[x_{i \alpha}\right]\right)\left(x_{j \gamma}-\mathbb{E}\left[x_{j \gamma}\right]\right)\right] \mathbf{z}_{\alpha} \mathbf{z}_{\gamma}^{\top} \mathbf{A}^{-1} \\
= & \mathbf{A}^{-1} \sum_{\alpha=1}^{N} \sum_{\gamma=1}^{N} \delta_{\alpha \gamma} \sigma_{i j} \mathbf{z}_{\alpha} \mathbf{z}_{\gamma}^{\top} \mathbf{A}^{-1} \\
= & \mathbf{A}^{-1} \sum_{\alpha=1}^{N} \sigma_{i j} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} \mathbf{A}^{-1} \\
= & \mathbf{A}^{-1}\left(\sigma_{i j} \mathbf{A} \mathbf{A}^{-1}\right) \\
= & \sigma_{i j} \mathbf{A}^{-1} .
\end{aligned}
$$

From Theorem 4.6, it follows that

$$
\begin{aligned}
N \hat{\boldsymbol{\Sigma}} & =\sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\hat{\mathbf{B}} \mathbf{z}_{\alpha}\right)\left(\mathbf{x}_{\alpha}-\hat{\mathbf{B}} \mathbf{z}_{\alpha}\right)^{\top} \\
& =\sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top}-\mathbf{x}_{\alpha} \mathbf{z}_{\alpha}^{\top} \hat{\mathbf{B}}^{\top}-\hat{\mathbf{B}} \mathbf{z}_{\alpha} \mathbf{x}_{\alpha}^{\top}+\hat{\mathbf{B}} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} \hat{\mathbf{B}}^{\top}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top}-\sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{z}_{\alpha}^{\top} \hat{\mathbf{B}}^{\top}-\sum_{\alpha=1}^{N} \hat{\mathbf{B}} \mathbf{z}_{\alpha} \mathbf{x}_{\alpha}^{\top}+\sum_{\alpha=1}^{N} \hat{\mathbf{B}} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} \hat{\mathbf{B}}^{\top} \\
& =\sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top}-\hat{\mathbf{B}} \mathbf{A} \hat{\mathbf{B}}^{\top}-\hat{\mathbf{B}} \mathbf{A} \hat{\mathbf{B}}^{\top}+\hat{\mathbf{B}} \mathbf{A} \hat{\mathbf{B}}^{\top} \\
& =\sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^{\top}-\hat{\mathbf{B}} \mathbf{A} \hat{\mathbf{B}}^{\top} .
\end{aligned}
$$

is distributed according to $\mathcal{W}(\boldsymbol{\Sigma}, N-q)$.
Theorem 7.3. The least squares estimator $\hat{\mathbf{B}}$ is the best linear unbiased estimator of \mathbf{B}.
Proof. Let

$$
\tilde{\beta}_{i g}=\sum_{\alpha=1}^{N} \sum_{j=1}^{p} f_{j \alpha} x_{j \alpha}
$$

be arbitrary unbiased estimator of $\beta_{i g}$, which satisfied

$$
\sum_{\alpha=1}^{N} f_{j \alpha} z_{h \alpha}= \begin{cases}1, & j=i, h=g, \\ 0, & \text { otherwise } .\end{cases}
$$

Let $a^{h g}$ be the (h, g)-th element of \mathbf{A}^{-1}, then the least square estimator can be written as

$$
\hat{\beta}_{i g}=\sum_{\alpha=1}^{N} \sum_{h=1}^{q} x_{i \alpha} z_{h \alpha} a^{h g}
$$

where $\mathbf{A}=\sum_{\alpha=1}^{N} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$. Then we have

$$
\begin{aligned}
& \mathbb{E}\left[\left(\tilde{\beta}_{i g}-\beta_{i g}\right)^{2}\right] \\
= & \mathbb{E}\left[\left(\hat{\beta}_{i g}-\beta_{i g}+\left(\tilde{\beta}_{i g}-\hat{\beta}_{i g}\right)\right)^{2}\right] \\
= & \mathbb{E}\left[\left(\hat{\beta}_{i g}-\beta_{i g}\right)^{2}\right]+\mathbb{E}\left[\left(\hat{\beta}_{i g}-\beta_{i g}\right)\left(\tilde{\beta}_{i g}-\hat{\beta}_{i g}\right)\right]+\mathbb{E}\left[\left(\tilde{\beta}_{i g}-\hat{\beta}_{i g}\right)^{2}\right]
\end{aligned}
$$

Let $u_{i \alpha}=x_{i \alpha}-\mathbb{E}\left[x_{i \alpha}\right]$. Since both $\tilde{\beta}_{i g}$ and $\hat{\beta}_{i g}$ are unbiased estimator of $\beta_{i g}$, we have

$$
\tilde{\beta}_{i g}-\beta_{i g}=\sum_{\alpha=1}^{N} \sum_{j=1}^{p} f_{j \alpha} u_{j \alpha}, \quad \hat{\beta}_{i g}-\beta_{i g}=\sum_{\alpha=1}^{N} \sum_{h=1}^{q} u_{i \alpha} z_{h \alpha} a^{h g},
$$

and

$$
\tilde{\beta}_{i g}-\hat{\beta}_{i g}=\sum_{\alpha=1}^{N} \sum_{j=1}^{p}\left(f_{j \alpha}-\delta_{i j} \sum_{h=1}^{q} z_{h \alpha} a^{h g}\right) u_{j \alpha},
$$

where $\delta_{i i}=1$ and $\delta_{i j}=0$ for $i \neq j$. Then we have

$$
\begin{aligned}
& \mathbb{E}\left[\left(\hat{\beta}_{i g}-\beta_{i g}\right)\left(\tilde{\beta}_{i g}-\hat{\beta}_{i g}\right)\right] \\
= & \mathbb{E}\left[\sum_{\alpha=1}^{N} \sum_{\gamma=1}^{N} \sum_{h=1}^{q} z_{h \alpha} a^{h g} u_{i \alpha} \sum_{j=1}^{p}\left(f_{j \gamma}-\delta_{i j} \sum_{h^{\prime}=1}^{q} z_{h^{\prime} \gamma} a^{h^{\prime} g}\right) u_{j \gamma}\right] \\
= & \sum_{\alpha=1}^{N} \sum_{h=1}^{q} \sum_{j=1}^{p} z_{h \alpha} a^{h g}\left(f_{j \alpha}-\delta_{i j} \sum_{h^{\prime}=1}^{q} z_{h^{\prime} \alpha} a^{h^{\prime} g}\right) \sigma_{i j}
\end{aligned}
$$

$$
\begin{aligned}
& =\sigma_{i i} a^{g g}-\sigma_{i i} \sum_{h=1}^{q} \sum_{h^{\prime}=1}^{q} a_{h h^{\prime}} a^{h g} a^{h^{\prime} g} \\
& =\sigma_{i i} a^{g g}-\sigma_{i i} a^{g g}=0 .
\end{aligned}
$$

Thus

$$
\mathbb{E}\left[\left(\tilde{\beta}_{i g}-\beta_{i g}\right)^{2}\right] \geq \mathbb{E}\left[\left(\hat{\beta}_{i g}-\beta_{i g}\right)^{2}\right]+\mathbb{E}\left[\left(\tilde{\beta}_{i g}-\hat{\beta}_{i g}\right)^{2}\right] \geq \mathbb{E}\left[\left(\hat{\beta}_{i g}-\beta_{i g}\right)^{2}\right]
$$

Theorem 7.4. The likelihood ratio criterion

$$
\lambda=\frac{\left(\operatorname{det}\left(\hat{\boldsymbol{\Sigma}}_{\Omega}\right)\right)^{\frac{N}{2}}}{\left(\operatorname{det}\left(\hat{\boldsymbol{\Sigma}}_{\omega}\right)\right)^{\frac{N}{2}}}
$$

for testing the null hypothesis $\mathbf{B}_{1}=\mathbf{0}$ is invariant with respect to transformations $\mathbf{x}_{\alpha}^{*}=\mathbf{D} \mathbf{x}_{\alpha}$ for $\alpha=1, \ldots, N$ and non-singular \mathbf{D}.

Proof. The estimators in terms of \mathbf{x}_{α}^{*} are

$$
\begin{aligned}
\hat{\mathbf{B}}^{*} & =\mathbf{D C} \mathbf{}^{-1} \mathbf{A}=\mathbf{D} \hat{\mathbf{B}} \\
\hat{\mathbf{\Sigma}}_{\Omega}^{*} & =\frac{1}{N} \sum_{\alpha=1}^{N}\left(\mathbf{D} \mathbf{x}_{\alpha}-\mathbf{D} \hat{\mathbf{B}} \mathbf{z}_{\alpha}\right)\left(\mathbf{D} \mathbf{x}_{\alpha}-\mathbf{D} \hat{\mathbf{B}} \mathbf{z}_{\alpha}\right)^{\top}=\mathbf{D} \hat{\boldsymbol{\Sigma}}_{\Omega} \mathbf{D}^{\top} \\
\hat{\mathbf{B}}_{2 \omega}^{*} & =\mathbf{D}\left(\mathbf{C}_{2}-\mathbf{B}_{1}^{*} \mathbf{A}_{12}\right) \mathbf{A}_{22}^{-1}=\mathbf{D} \hat{\mathbf{B}}_{2 \omega} \\
\hat{\mathbf{\Sigma}}_{\omega}^{*} & =\frac{1}{N} \sum_{\alpha=1}^{N}\left(\mathbf{D} \mathbf{y}_{\alpha}-\mathbf{D} \hat{\mathbf{B}}_{2 \omega} \mathbf{z}_{\alpha}^{(2)}\right)\left(\mathbf{D} \mathbf{y}_{\alpha}-\mathbf{D} \hat{\mathbf{B}}_{2 \omega} \mathbf{z}_{\alpha}^{(2)}\right)^{\top}=\mathbf{D} \hat{\boldsymbol{\Sigma}}_{\omega} \mathbf{D}^{\top},
\end{aligned}
$$

then

$$
\lambda^{*}=\frac{\left(\operatorname{det}\left(\hat{\boldsymbol{\Sigma}}_{\Omega}^{*}\right)\right)^{\frac{N}{2}}}{\left(\operatorname{det}\left(\hat{\boldsymbol{\Sigma}}_{\omega}^{*}\right)\right)^{\frac{N}{2}}}=\frac{\left(\operatorname{det}\left(\hat{\boldsymbol{\Sigma}}_{\Omega}\right)\right)^{\frac{N}{2}}}{\left(\operatorname{det}\left(\hat{\boldsymbol{\Sigma}}_{\omega}\right)\right)^{\frac{N}{2}}}
$$

Theorem 7.5. The statistic

$$
V_{1}=\frac{\prod_{g=1}^{q}\left(\operatorname{det}\left(\mathbf{A}_{g}\right)\right)^{\frac{n_{g}}{2}}}{(\operatorname{det}(\mathbf{A}))^{\frac{n}{2}}}
$$

is invariant with respect to linear transformation

$$
\mathbf{x}^{*(g)}=\mathbf{C} \mathbf{x}^{(g)}+\boldsymbol{\nu}^{(g)}
$$

Proof. We have

$$
V_{1}^{*}=\frac{\prod_{g=1}^{q}\left(\operatorname{det}\left(\mathbf{A}_{g}^{*}\right)\right)^{\frac{n_{g}}{2}}}{\left(\operatorname{det}\left(\mathbf{A}^{*}\right)\right)^{\frac{n}{2}}}=\frac{\prod_{g=1}^{q}\left(\operatorname{det}\left(\mathbf{C A}_{g} \mathbf{C}^{\top}\right)\right)^{\frac{n_{g}}{2}}}{\left(\operatorname{det}\left(\mathbf{C A C} \mathbf{C}^{\top}\right)\right)^{\frac{n}{2}}}=\frac{\prod_{g=1}^{q}\left(\operatorname{det}\left(\mathbf{A}_{g}\right)\right)^{\frac{n_{g}}{2}}}{(\operatorname{det}(\mathbf{A}))^{\frac{n}{2}}}=V_{1}
$$

Theorem 7.6. Given a set of p-component observation vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, the likelihood ratio criterion for testing the hypothesis

$$
\boldsymbol{\Sigma}=\sigma_{0}^{2} \Psi_{0}
$$

where Ψ_{0} is specified and σ^{2} is not specified, is

$$
\frac{\left(\operatorname{det}\left(\mathbf{A} \boldsymbol{\Psi}_{0}^{-1}\right)\right)^{\frac{N}{2}}}{\left(\operatorname{tr}\left(\mathbf{A} \boldsymbol{\Psi}_{0}^{-1}\right) / p\right)^{\frac{p N}{2}}}
$$

Proof. Let C be matrix such that

$$
\mathbf{C} \mathbf{\Psi}_{0} \mathbf{C}^{\top}=\mathbf{I} .
$$

and $\mathbf{x}_{\alpha}^{*}=\mathbf{C x}, \boldsymbol{\mu}^{*}=\mathbf{C} \boldsymbol{\mu}, \boldsymbol{\Sigma}^{*}=\mathbf{C} \boldsymbol{\Sigma} \mathbf{C}^{\top}$. Then we have

$$
\operatorname{tr}\left(\mathbf{A}^{*}\right)=\operatorname{tr}\left(\sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}^{*}-\overline{\mathbf{x}}_{\alpha}^{*}\right)\left(\mathbf{x}_{\alpha}^{*}-\overline{\mathbf{x}}_{\alpha}^{*}\right)^{\top}\right)=\operatorname{tr}\left(\mathbf{C A} \mathbf{C}^{\top}\right)=\operatorname{tr}\left(\mathbf{A} \mathbf{C}^{\top} \mathbf{C}\right)=\operatorname{tr}\left(\mathbf{A} \Psi_{0}^{-1}\right)
$$

and

$$
\left.\operatorname{det}\left(\mathbf{A}^{*}\right)=\operatorname{det}\left(\mathbf{C A C} \mathbf{}^{\boldsymbol{\top}}\right)=\operatorname{det}(\mathbf{C})\right)^{2} \operatorname{det}(\mathbf{A})=\left(\operatorname{det}\left(\boldsymbol{\Psi}_{0}\right)\right)^{-1} \operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{A} \boldsymbol{\Psi}_{0}^{-1}\right) .
$$

Thus

$$
\frac{\left(\operatorname{det}\left(\mathbf{A}^{*}\right)^{\frac{N}{2}}\right.}{\left(\operatorname{tr}\left(\mathbf{A}^{*}\right) / p\right)^{\frac{p N}{2}}}=\frac{\left(\operatorname{det}\left(\mathbf{A} \mathbf{\Psi}_{0}^{-1}\right)\right)^{\frac{N}{2}}}{\left(\operatorname{tr}\left(\mathbf{A} \mathbf{\Psi}_{0}^{-1}\right) / p\right)^{\frac{p N}{2}}}
$$

8 Principal Components

Theorem 8.1. Let $\boldsymbol{\Sigma} \in \mathbb{R}^{p \times p}$ be positive definite. A vector $\boldsymbol{\beta}$ with $\|\boldsymbol{\beta}\|_{2}=1$ maximizing $\boldsymbol{\beta}^{\top} \boldsymbol{\Sigma} \boldsymbol{\beta}$ must satisfy

$$
\left(\boldsymbol{\Sigma}-\lambda_{1} \mathbf{I}\right) \boldsymbol{\beta}=\mathbf{0},
$$

where λ_{1} is the largest root of

$$
\operatorname{det}(\boldsymbol{\Sigma}-\lambda \mathbf{I})=0 .
$$

Proof. Let

$$
\phi(\boldsymbol{\beta}, \lambda)=\boldsymbol{\beta}^{\top} \boldsymbol{\Sigma} \boldsymbol{\beta}-\lambda\left(\boldsymbol{\beta}^{\top} \boldsymbol{\beta}-1\right),
$$

where λ is a Lagrange multiplier. A vector $\boldsymbol{\beta}$ maximizing $\boldsymbol{\beta}^{\top} \boldsymbol{\Sigma} \boldsymbol{\beta}$ must satisfy

$$
\mathbf{0}=\frac{\partial \phi(\boldsymbol{\beta}, \lambda)}{\partial \boldsymbol{\beta}}=2 \boldsymbol{\Sigma} \boldsymbol{\beta}-2 \lambda \boldsymbol{\beta},
$$

that is $(\boldsymbol{\Sigma}-\lambda \mathbf{I}) \boldsymbol{\beta}=\mathbf{0}$. The constraint $\|\boldsymbol{\beta}\|_{2}=1$ means $\boldsymbol{\Sigma}-\lambda \mathbf{I}$ is singular. Then λ must satisfy

$$
\operatorname{det}(\boldsymbol{\Sigma}-\lambda \mathbf{I})=0 .
$$

We also have

$$
\boldsymbol{\beta}^{\top} \boldsymbol{\Sigma} \boldsymbol{\beta}=\lambda \boldsymbol{\beta}^{\top} \boldsymbol{\beta}=\lambda,
$$

which implies our result.
Remark 8.1. For the second principle components $\boldsymbol{\beta}$, we require

$$
0=\mathbb{E}\left[\boldsymbol{\beta}^{\top} \mathbf{x} \boldsymbol{\beta}^{(1)}{ }^{\top} \mathbf{x}\right]=\mathbb{E}\left[\boldsymbol{\beta}^{\top} \mathbf{x} \mathbf{x}^{\top} \boldsymbol{\beta}^{(1)}\right]=\boldsymbol{\beta}^{\top} \boldsymbol{\Sigma} \boldsymbol{\beta}^{(1)}=\lambda \boldsymbol{\beta}^{\top} \boldsymbol{\beta}^{(1)} .
$$

Let

$$
\phi_{2}(\boldsymbol{\beta}, \lambda, \boldsymbol{\nu})=\boldsymbol{\beta}^{\top} \boldsymbol{\Sigma} \boldsymbol{\beta}-\lambda\left(\boldsymbol{\beta}^{\top} \boldsymbol{\beta}-1\right)-2 \nu \boldsymbol{\beta}^{\top} \boldsymbol{\Sigma} \boldsymbol{\beta}^{(1)} .
$$

We require

$$
\mathbf{0}=\frac{\partial \phi_{2}(\boldsymbol{\beta}, \lambda)}{\partial \boldsymbol{\beta}}=2 \boldsymbol{\Sigma} \boldsymbol{\beta}-2 \lambda \boldsymbol{\beta}-2 \nu \boldsymbol{\Sigma} \boldsymbol{\beta}^{(1)}
$$

Multiplying on the left by $\boldsymbol{\beta}^{(1)^{\top}}$, we have

$$
\mathbf{0}=2 \boldsymbol{\beta}^{(1)^{\top}} \boldsymbol{\Sigma} \boldsymbol{\beta}-2 \lambda \boldsymbol{\beta}^{(1)^{\top}} \boldsymbol{\beta}-2 \nu \boldsymbol{\beta}^{(1)^{\top}} \boldsymbol{\Sigma} \boldsymbol{\beta}^{(1)}=-2 \nu \lambda_{1} .
$$

Therefore $\nu=0$ and $\boldsymbol{\beta}$ must satisfy $(\boldsymbol{\Sigma}-\lambda \mathbf{I}) \boldsymbol{\beta}=\mathbf{0}$ and $\boldsymbol{\beta}^{\top} \boldsymbol{\beta}^{(1)}=0$, where

$$
\operatorname{det}(\boldsymbol{\Sigma}-\lambda \mathbf{I})=0
$$

Hence, we should take λ by the second-largest root of $\operatorname{det}(\boldsymbol{\Sigma}-\lambda \mathbf{I})=0$.
Remark 8.2. For the $(r+1)$-th step, we let

$$
\phi_{r+1}(\boldsymbol{\beta}, \lambda, \boldsymbol{\nu})=\boldsymbol{\beta}^{\top} \boldsymbol{\Sigma} \boldsymbol{\beta}-\lambda\left(\boldsymbol{\beta}^{\top} \boldsymbol{\beta}-1\right)-2 \sum_{i=1}^{r} \nu_{i} \boldsymbol{\beta}^{\top} \boldsymbol{\Sigma} \boldsymbol{\beta}^{(i)}
$$

and

$$
\mathbf{0}=\frac{\partial \phi_{r+1}(\boldsymbol{\beta}, \lambda)}{\partial \boldsymbol{\beta}}=2 \boldsymbol{\Sigma} \boldsymbol{\beta}-2 \lambda \boldsymbol{\beta}-2 \sum_{i=1}^{r} \nu_{i} \boldsymbol{\Sigma} \boldsymbol{\beta}^{(i)}
$$

Similarly, we have $v_{j}=0$ and $\left(\boldsymbol{\Sigma}-\lambda_{j} \mathbf{I}\right) \boldsymbol{\beta}^{(j)}=\mathbf{0}$ and λ_{j} is the root of $\operatorname{det}(\boldsymbol{\Sigma}-\lambda \mathbf{I})=0$
Remark 8.3. For the stationary point on surfaces $\mathbf{x}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}=C$, we let

$$
\psi(\mathbf{x}, \lambda)=\mathbf{x}^{\top} \mathbf{x}-\lambda \mathbf{x}^{\top} \mathbf{\Sigma}^{-1} \mathbf{x}
$$

Then

$$
\mathbf{0}=\frac{\partial \psi(\mathbf{x}, \lambda)}{\partial \mathbf{x}}=2 \mathbf{x}-2 \lambda \boldsymbol{\Sigma}^{-1} \mathbf{x}
$$

that is $\boldsymbol{\Sigma} \mathbf{x}=\lambda \mathbf{x}$. Thus the vectors $\boldsymbol{\beta}^{(1)}, \ldots, \boldsymbol{\beta}^{(p)}$ give the principal axis of the ellipsoid. The transformation $\mathbf{u}=\mathbf{B}^{\top} \mathbf{x}$ is a rotation of the coordinate axes so that the new axes are in the direction of the principal axes of the ellipsoid. In the new coordinates, the ellipsoid is

$$
\mathbf{u}^{\top} \boldsymbol{\Lambda}^{-1} \mathbf{u}=C
$$

Theorem 8.2. An orthogonal transformation $\mathbf{v}=\mathbf{C x}$ of a random vector \mathbf{x} with $\mathbb{E}[\mathbf{x}]=\mathbf{0}$ leaves invariant the generalized variance and the sum of the variances of the components.
Proof. Let $\mathbb{E}\left[\mathbf{x} \mathbf{x}^{\top}\right]=\mathbf{\Sigma}$. The generalized variance of \mathbf{v} is

$$
\operatorname{det}\left(\mathbf{C} \boldsymbol{\Sigma} \mathbf{C}^{\top}\right)=\operatorname{det}(\mathbf{C}) \operatorname{det}(\boldsymbol{\Sigma}) \operatorname{det}\left(\mathbf{C}^{\top}\right)=\operatorname{det}(\boldsymbol{\Sigma})
$$

The sum of the variances of the components of \mathbf{v} is

$$
\sum_{i=1}^{p} \mathbb{E}\left[v_{i}^{2}\right]=\operatorname{tr}\left(\mathbf{C} \boldsymbol{\Sigma} \mathbf{C}^{\top}\right)=\operatorname{tr}\left(\boldsymbol{\Sigma} \mathbf{C}^{\top} \mathbf{C}\right)=\operatorname{tr}(\boldsymbol{\Sigma})=\sum_{i=1}^{p} \mathbb{E}\left[x_{i}^{2}\right]
$$

Theorem 8.3. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ be N observations from $\mathcal{N}_{p}(\mathbf{0}, \boldsymbol{\Sigma})$, where $\boldsymbol{\Sigma}$ has p different characteristic roots and $N>p$. Then maximum likelihood estimators of $\lambda_{1}, \ldots, \lambda_{p}$ and $\boldsymbol{\beta}^{(1)}, \ldots, \boldsymbol{\beta}^{(p)}$ consists of the roots $\lambda_{1}>\cdots>\lambda_{p}$ of

$$
\operatorname{det}(\hat{\boldsymbol{\Sigma}}-\lambda \mathbf{I})=0
$$

and corresponding vectors $\hat{\boldsymbol{\beta}}^{(1)}, \ldots, \hat{\boldsymbol{\beta}}^{(p)}$ satisfying $\left\|\hat{\boldsymbol{\beta}}^{(i)}\right\|_{2}=1$ and

$$
\left(\hat{\boldsymbol{\Sigma}}-\lambda_{i} \mathbf{I}\right) \hat{\boldsymbol{\beta}}^{(i)}=\mathbf{0}
$$

for $i=1, \ldots, p$, where $\hat{\boldsymbol{\Sigma}}$ is the the maximum likelihood estimate of $\boldsymbol{\Sigma}$.
Proof. When the roots of $\operatorname{det}(\boldsymbol{\Sigma}-\lambda \mathbf{I})$ are different, each vector $\boldsymbol{\beta}^{(i)}$ uniquely defined except that it can be replaced by $-\boldsymbol{\beta}^{(i)}$. If we require that the first nonzero component of $-\boldsymbol{\beta}^{(i)}$ be positive, then $-\boldsymbol{\beta}^{(i)}$ is uniquely defined. Then the variables $\boldsymbol{\mu}, \boldsymbol{\Lambda}$ and \mathbf{B} is a is a single-valued function of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$. Hence, the set of maximum likelihood estimates of $\boldsymbol{\mu}, \boldsymbol{\Lambda}$ and \mathbf{B} is the same function of $\hat{\boldsymbol{\mu}}$ and $\boldsymbol{\Sigma}$ (restriction that the first nonzero component of $\boldsymbol{\beta}^{(i)}$ must be positive).

Remark 8.4. If $\boldsymbol{\Sigma}$ is non-singular, the probability is 1 that the roots of $\lambda_{1}, \ldots, \lambda_{p}$ are different. Please see Masashi Okamoto. "Distinctness of the eigenvalues of a quadratic form in a multivariate sample." The Annals of Statistics (1973): 763-765.

Theorem 8.4. Let $n \mathbf{S} \sim \mathcal{W}(\boldsymbol{\Sigma}, n)$ and $\left(\lambda_{1}, \boldsymbol{\beta}^{(1)}\right),\left(\lambda_{p}, \boldsymbol{\beta}^{(p)}\right)$ be two distinct eigen-pairs of $\boldsymbol{\Sigma}$ with $\left\|\boldsymbol{\beta}^{(1)}\right\|_{2}=$ $\left\|\boldsymbol{\beta}^{(p)}\right\|_{2}=1$, then

$$
\frac{n \boldsymbol{\beta}^{(1)}{ }^{\top} \mathbf{S} \boldsymbol{\beta}^{(1)}}{\lambda_{1}} \quad \text { and } \quad \frac{n \boldsymbol{\beta}^{(p)^{\top}} \mathbf{S} \boldsymbol{\beta}^{(p)}}{\lambda_{p}}
$$

are independently distrusted as χ^{2}-distribution with n degrees of freedom.
Proof. We have

$$
n \mathbf{S}=\sum_{\alpha=1}^{n} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}
$$

where \mathbf{z}_{α} are independently distributed as $\mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$. Then we have $\boldsymbol{\beta}^{(1)}{ }^{\top} \mathbf{z}_{\alpha} \sim \mathcal{N}\left(0, \lambda_{1}\right)$, since $\boldsymbol{\beta}^{(1)}{ }^{\top} \boldsymbol{\Sigma} \boldsymbol{\beta}^{(1)}=$ $\lambda_{1} \boldsymbol{\beta}^{(1)^{\top}} \boldsymbol{\beta}^{(1)}=\lambda_{1}$. Hence, it holds that

$$
\frac{n \boldsymbol{\beta}^{(1)^{\top}} \mathbf{S} \boldsymbol{\beta}^{(1)}}{\lambda_{1}}=\sum_{\alpha=1}^{n} \frac{\boldsymbol{\beta}^{(1)^{\top}} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} \boldsymbol{\beta}^{(1)}}{\lambda_{1}}=\sum_{\alpha=1}^{n}\left(\frac{\boldsymbol{\beta}^{(1)^{\top}} \mathbf{z}_{\alpha}}{\sqrt{\lambda_{1}}}\right)^{2} \sim \chi_{n}^{2}
$$

are distrusted as χ^{2}-distribution with n degrees of freedom We also have the similar result for λ_{p} and $\boldsymbol{\beta}^{(p)}$.
Consider that $\boldsymbol{\beta}^{(1)}{ }^{\top} \mathbf{z}_{\alpha}$ and $\boldsymbol{\beta}^{(p)^{\top}} \mathbf{z}_{\alpha}$ are normal distributed with zero mean and

$$
\mathbb{E}\left[\boldsymbol{\beta}^{(1)^{\top}} \mathbf{z}_{\alpha} \boldsymbol{\beta}^{(p)^{\top}} \mathbf{z}_{\alpha}\right]=\boldsymbol{\beta}^{(1)^{\top}} \mathbb{E}\left[\mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}\right] \boldsymbol{\beta}^{(p)}=\boldsymbol{\beta}^{(1)^{\top}} \boldsymbol{\Sigma} \boldsymbol{\beta}^{(p)}=\lambda_{p} \boldsymbol{\beta}^{(1)^{\top}} \boldsymbol{\beta}^{(p)}=0
$$

Hence, we have proved the desired independence.
Remark 8.5. Let l and u be two numbers such that

$$
1-\epsilon=\operatorname{Pr}\left\{n l \leq \chi_{n}^{2}\right\} \operatorname{Pr}\left\{\chi_{n}^{2} \leq n u\right\}
$$

Then we have

$$
1-\epsilon=\operatorname{Pr}\left\{n l \leq \frac{n \boldsymbol{\beta}^{(1)}{ }^{\top} \mathbf{S} \boldsymbol{\beta}^{(1)}}{\lambda_{1}}, \frac{n \boldsymbol{\beta}^{(p)^{\top}} \mathbf{S} \boldsymbol{\beta}^{(p)}}{\lambda_{p}} \leq n u\right\}
$$

$$
\begin{aligned}
& =\operatorname{Pr}\left\{\lambda_{1} \leq \frac{\boldsymbol{\beta}^{(1)^{\top}} \mathbf{S} \boldsymbol{\beta}^{(1)}}{l}, \frac{\boldsymbol{\beta}^{(p)^{\top}} \mathbf{S} \boldsymbol{\beta}^{(p)}}{u} \leq \lambda_{p}\right\} \\
& \leq \operatorname{Pr}\left\{\lambda_{1} \leq \frac{\max _{\|\mathbf{b}\|_{2}=1} \mathbf{b}^{\top} \mathbf{S b}}{l}, \frac{\min _{\|\mathbf{b}\|_{2}=1} \mathbf{b}^{\top} \mathbf{S b}}{u} \leq \lambda_{p}\right\} \\
& =\operatorname{Pr}\left\{\lambda_{1} \leq \frac{l_{1}}{l}, \frac{l_{p}}{u} \leq \lambda_{p}\right\}=\operatorname{Pr}\left\{\frac{l_{p}}{u} \leq \lambda_{p} \leq \lambda_{1} \leq \frac{l_{1}}{l}\right\} .
\end{aligned}
$$

9 Canonical Correlations

We consider the problem

$$
\begin{aligned}
& \quad \max _{\boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha}=1} \boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma}_{12} \boldsymbol{\gamma}, \\
& \boldsymbol{\gamma}^{\top} \boldsymbol{\Sigma}_{22} \boldsymbol{\gamma}=1
\end{aligned}
$$

where

$$
\boldsymbol{\Sigma}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right] \succ \mathbf{0} .
$$

Let

$$
\psi(\boldsymbol{\alpha}, \boldsymbol{\gamma}, \lambda, \mu)=\boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma}_{12} \boldsymbol{\gamma}-\frac{\lambda}{2}\left(\boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha}-1\right)-\frac{\mu}{2}\left(\boldsymbol{\gamma}^{\top} \boldsymbol{\Sigma}_{22} \boldsymbol{\gamma}-1\right) .
$$

The vectors of derivatives set equal to zero are

$$
\begin{aligned}
& \frac{\partial \psi(\boldsymbol{\alpha}, \gamma, \lambda, \mu)}{\partial \boldsymbol{\alpha}}=\boldsymbol{\Sigma}_{12} \boldsymbol{\gamma}-\lambda \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha}=\mathbf{0} \\
& \frac{\partial \psi(\boldsymbol{\alpha}, \boldsymbol{\gamma}, \lambda, \mu)}{\partial \gamma}=\boldsymbol{\Sigma}_{12}^{\top} \boldsymbol{\alpha}-\mu \boldsymbol{\Sigma}_{22} \gamma=\mathbf{0}
\end{aligned}
$$

Multiplication of above ones on the left by $\boldsymbol{\alpha}^{\top}$ and $\boldsymbol{\gamma}^{\top}$ respectively, we have

$$
\begin{aligned}
\boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma}_{12} \boldsymbol{\gamma}-\lambda \boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha} & =\mathbf{0}, \\
\gamma^{\top} \boldsymbol{\Sigma}_{12}^{\top} \boldsymbol{\alpha}-\mu \boldsymbol{\gamma}^{\top} \boldsymbol{\Sigma}_{22} \boldsymbol{\gamma} & =\mathbf{0} .
\end{aligned}
$$

The constraint means $\lambda=\mu=\boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma}_{12} \boldsymbol{\gamma}$. Setting derivatives be zero also can be written as

$$
\left[\begin{array}{cc}
-\lambda \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & -\lambda \boldsymbol{\Sigma}_{22}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{\alpha} \\
\gamma
\end{array}\right]=\mathbf{0} .
$$

The positive definiteness of $\boldsymbol{\Sigma}$ means $\boldsymbol{\alpha} \neq \mathbf{0}$ and $\boldsymbol{\gamma} \neq \mathbf{0}$, then

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & -\lambda \boldsymbol{\Sigma}_{22}
\end{array}\right]\right)=0
$$

Remark 9.1. Let

$$
\boldsymbol{\xi}=\left[\begin{array}{c}
\boldsymbol{\alpha} \\
\gamma
\end{array}\right], \quad \mathbf{A}=\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{11} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\Sigma}_{22}
\end{array}\right] \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{cc}
\mathbf{0} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \mathbf{0}
\end{array}\right] .
$$

We have the form of generalized eigenvalue decomposition

$$
\mathbf{B} \boldsymbol{\xi}=\lambda \mathbf{A} \boldsymbol{\xi} \quad \text { and } \quad \operatorname{det}(\mathbf{B}-\lambda \mathbf{A})=0 .
$$

If $\mathbf{B}=\mathbf{I}$, it is eigenvalue decomposition. For $\mathbf{A} \succ \mathbf{0}$, we have

$$
\mathbf{A}^{-1} \mathbf{B} \boldsymbol{\xi}=\lambda \boldsymbol{\xi} \quad \text { and } \quad \operatorname{det}\left(\mathbf{A}^{-1} \mathbf{B}-\lambda \mathbf{I}\right)=0,
$$

which corresponds to eigenvalue decomposition on $\mathbf{A}^{-1} \mathbf{B}$.

Remark 9.2. At $(r+1)$-th step, the uncorrelated conditions for $u=\boldsymbol{\alpha}^{\top} \mathbf{x}^{(1)}$ and $v=\boldsymbol{\gamma}^{\top} \mathbf{x}^{(2)}$ are

$$
\begin{aligned}
& 0=\mathbb{E}\left[u u_{i}\right]=\mathbb{E}\left[\boldsymbol{\alpha}^{\top} \mathbf{x}^{(1)} \mathbf{x}^{(1)^{\top}} \boldsymbol{\alpha}^{(i)}\right]=\boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha}^{(i)} \\
& 0=\mathbb{E}\left[v v_{i}\right]=\mathbb{E}\left[\boldsymbol{\gamma}^{\top} \mathbf{x}^{(2)} \mathbf{x}^{(2)^{\top}} \boldsymbol{\gamma}^{(i)}\right]=\boldsymbol{\gamma}^{\top} \boldsymbol{\Sigma}_{22} \boldsymbol{\gamma}^{(i)}
\end{aligned}
$$

for $i=1, \ldots, r$. Then

$$
\begin{aligned}
& \mathbb{E}\left[u v_{i}\right]=\mathbb{E}\left[\boldsymbol{\alpha}^{\top} \mathbf{x}^{(1)} \mathbf{x}^{(2)^{\top}} \boldsymbol{\gamma}^{(i)}\right]=\boldsymbol{\alpha}^{\top} \mathbb{E}\left[\mathbf{x}^{(1)} \mathbf{x}^{(2)^{\top}}\right] \boldsymbol{\gamma}^{(i)}=\boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma}_{12} \boldsymbol{\gamma}^{(i)}=\lambda \boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha}^{(i)}=0 . \\
& \mathbb{E}\left[v u_{i}\right]=\mathbb{E}\left[\boldsymbol{\gamma}^{\top} \mathbf{x}^{(2)} \mathbf{x}^{(1)^{\top}} \boldsymbol{\alpha}^{(i)}\right]=\boldsymbol{\gamma}^{\top} \mathbb{E}\left[\mathbf{x}^{(2)} \mathbf{x}^{(1)}\right] \boldsymbol{\alpha}^{(i)}=\boldsymbol{\gamma}^{\top} \boldsymbol{\Sigma}_{21} \boldsymbol{\alpha}^{(i)}=\lambda \boldsymbol{\gamma}^{\top} \boldsymbol{\Sigma}_{22} \boldsymbol{\gamma}^{(i)}=0 .
\end{aligned}
$$

We now maximize $\mathbb{E}\left[u_{r+1} v_{r+1}\right]$. Let

$$
\psi_{r+1}(\boldsymbol{\alpha}, \boldsymbol{\gamma}, \lambda, \mu)=\boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma}_{12} \boldsymbol{\gamma}-\frac{\lambda}{2}\left(\boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha}-1\right)-\frac{\mu}{2}\left(\boldsymbol{\gamma}^{\top} \boldsymbol{\Sigma}_{22} \boldsymbol{\gamma}-1\right)-\sum_{i=1}^{r} \nu_{i} \boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha}^{(i)}-\sum_{i=1}^{r} \theta_{i} \boldsymbol{\gamma}^{\top} \boldsymbol{\Sigma}_{22} \boldsymbol{\gamma}^{(i)}
$$

The vectors of derivatives set equal to zero are

$$
\begin{aligned}
& \frac{\partial \psi_{r+1}(\boldsymbol{\alpha}, \boldsymbol{\gamma}, \lambda, \mu, \boldsymbol{\nu}, \boldsymbol{\theta})}{\partial \boldsymbol{\alpha}}=\boldsymbol{\Sigma}_{12} \boldsymbol{\gamma}-\lambda \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha}-\sum_{i=1}^{r} \nu_{i} \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha}^{(i)}=\mathbf{0} \\
& \frac{\partial \psi_{r+1}(\boldsymbol{\alpha}, \boldsymbol{\gamma}, \lambda, \mu, \boldsymbol{\nu}, \boldsymbol{\theta})}{\partial \boldsymbol{\gamma}}=\boldsymbol{\Sigma}_{12}^{\top} \boldsymbol{\alpha}-\mu \boldsymbol{\Sigma}_{22} \gamma-\sum_{i=1}^{r} \theta_{i} \boldsymbol{\Sigma}_{22} \gamma^{(i)}=\mathbf{0}
\end{aligned}
$$

Multiplication of above ones on the left by $\boldsymbol{\alpha}^{(j)^{\top}}$ and $\gamma^{(j)^{\top}}$ for any $j \leq r$ respectively gives

$$
\begin{array}{r}
0=\boldsymbol{\alpha}^{(j)^{\top}} \boldsymbol{\Sigma}_{12} \boldsymbol{\gamma}-\lambda \boldsymbol{\alpha}^{(j)^{\top}} \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha}-\sum_{i=1}^{r} \nu_{i} \boldsymbol{\alpha}^{(j)^{\top}} \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha}^{(i)}=-\nu_{j} \boldsymbol{\alpha}^{(j)^{\top}} \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha}^{(j)} \\
0=\boldsymbol{\gamma}^{(j)^{\top}} \boldsymbol{\Sigma}_{12}^{\top} \boldsymbol{\alpha}-\mu \boldsymbol{\gamma}^{(j)^{\top}} \boldsymbol{\Sigma}_{22} \boldsymbol{\gamma}-\sum_{i=1}^{r} \theta_{i} \boldsymbol{\gamma}^{(j)^{\top}} \boldsymbol{\Sigma}_{22} \boldsymbol{\gamma}^{(i)}=-\theta_{j} \boldsymbol{\gamma}^{(j)^{\top}} \boldsymbol{\Sigma}_{22} \boldsymbol{\gamma}^{(j)}
\end{array}
$$

Hence, we have $v_{j}=\theta_{j}=0$. Then the condition of derivatives is

$$
\left[\begin{array}{cc}
-\lambda \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & -\lambda \boldsymbol{\Sigma}_{22}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{\alpha} \\
\gamma
\end{array}\right]=\mathbf{0}
$$

where λ satisfies

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & -\lambda \boldsymbol{\Sigma}_{22}
\end{array}\right]\right)=0
$$

and α and γ satisfy

$$
\boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma}_{11} \boldsymbol{\alpha}=1, \quad \boldsymbol{\gamma}^{\top} \boldsymbol{\Sigma}_{22} \boldsymbol{\gamma}=1, \quad \boldsymbol{\alpha}^{\top} \boldsymbol{\Sigma}_{12} \boldsymbol{\gamma}^{(i)}=0, \quad \text { and } \quad \boldsymbol{\gamma}^{\top} \boldsymbol{\Sigma}_{21} \boldsymbol{\alpha}^{(i)}=0
$$

Theorem 9.1. The canonical correlations are invariant with respect to transformations

$$
\left\{\begin{array}{l}
\mathbf{x}^{*(1)}=\mathbf{C}_{1} \mathbf{x}^{(1)} \\
\mathbf{x}^{*(2)}=\mathbf{C}_{2} \mathbf{x}^{(2)}
\end{array}\right.
$$

where \mathbf{C}_{1} and \mathbf{C}_{2} are non-singular. Additionally, any function of $\boldsymbol{\Sigma}$ that is invariant (under any such transformation) is a function of the canonical correlations.

Proof. The canonical correlations of $\mathbf{x}^{*(1)}$ and $\mathbf{x}^{*(2)}$ are the roots of

$$
\begin{aligned}
0 & =\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda \mathbf{C}_{1} \boldsymbol{\Sigma}_{11} \mathbf{C}_{1} & \mathbf{C}_{1} \boldsymbol{\Sigma}_{12} \mathbf{C}_{2}^{\top} \\
\mathbf{C}_{2} \boldsymbol{\Sigma}_{21} \mathbf{C}_{1}^{\top} & -\lambda \mathbf{C}_{2} \boldsymbol{\Sigma}_{22} \mathbf{C}_{2}^{\top}
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{cc}
\mathbf{C}_{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{C}_{2}
\end{array}\right]\right) \operatorname{det}\left(\left[\begin{array}{cc}
-\lambda \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & -\lambda \boldsymbol{\Sigma}_{22}
\end{array}\right]\right) \operatorname{det}\left(\left[\begin{array}{cc}
\mathbf{C}_{1}^{\top} & \mathbf{0} \\
\mathbf{0} & \mathbf{C}_{2}^{\top}
\end{array}\right]\right)
\end{aligned}
$$

which are equivalent to the canonical correlations of $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$.
If $\mathbf{f}\left(\boldsymbol{\Sigma}_{11}, \boldsymbol{\Sigma}_{12}, \boldsymbol{\Sigma}_{22}\right)$ be a vector function such that $\mathbf{f}\left(\boldsymbol{\Sigma}_{11}, \boldsymbol{\Sigma}_{12}, \boldsymbol{\Sigma}_{22}\right)=\mathbf{f}\left(\mathbf{C}_{1} \boldsymbol{\Sigma}_{11} \mathbf{C}_{1}^{\top}, \mathbf{C}_{1} \boldsymbol{\Sigma}_{12} \mathbf{C}_{2}^{\top}, \mathbf{C}_{2} \boldsymbol{\Sigma}_{22} \mathbf{C}_{2}^{\top}\right)$ for any non-singular \mathbf{C}_{1} and \mathbf{C}_{2}. Let $\mathbf{C}_{1}=\mathbf{A}^{\top}$ and $\mathbf{C}_{2}=\boldsymbol{\Gamma}^{\top}$, then $\mathbf{f}\left(\mathbf{C}_{1} \boldsymbol{\Sigma}_{11} \mathbf{C}_{1}^{\top}, \mathbf{C}_{1} \boldsymbol{\Sigma}_{12} \mathbf{C}_{2}^{\top}, \mathbf{C}_{2} \boldsymbol{\Sigma}_{22} \mathbf{C}_{2}^{\top}\right)=$ $f(\mathbf{I}, \operatorname{diag}(\boldsymbol{\Lambda}, \mathbf{0}), \mathbf{I})$.

