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1 Review of Linear Algebra

Theorem 1.1 (QR Factorization). Prove the following results for Gram-Schmidt orthogonalization

1. rjj 6= 0 for all i = 1, . . . , n

2. ‖qi‖2 = 1 for all i = 1, . . . , n

3. q>i qj = 0 for all i = 1, . . . , n and j < i.

Proof. Part 1: Since each qi is a linear combination of {a1, · · · ,ai}, the entry rjj is zero means

rjj =

∥∥∥∥∥aj −
j−1∑
i=1

rijqi

∥∥∥∥∥
2

= 0,

then aj must be a linear combination of {a1, · · · ,aj−1}, which validates the full rank assumption on A.
Part 2: Just use the expression of rjj .
Part 3: Recall that rij = q>i aj for any i 6= j. We can verify

q>1 q2 =
q>1 (a2 − r12q1)

r22
=

q>1 (a2 − (q>1 a2)q1)

r22
=

q>1 a2 − (q>1 a2)q>1 q1

r22
= 0

Suppose for q>i qj = 0 for all q>i qj = 0 for all i = 1, . . . , n′ − 1 and j < i. Then for all k = 1, 2, . . . , n′ − 1,
we have

q>k qn′ =
q>k an′ −

∑n′−1
i=1 rin′q

>
k qi

rn′n′
=

q>k an′ − rkn′q>k qk
rn′n′

=
q>k an′ − rkn′

rn′n′
= 0

Then we prove the result by induction.

Theorem 1.2. Prove ‖A‖2 = σ1.

Proof. Let A = UΣV> be full SVD of A. Then

‖A‖2 = sup
‖x‖2=1

‖Ax‖2 = sup
‖x‖2=1

∥∥UΣV>x
∥∥

2
= sup
‖x‖2=1

∥∥ΣV>x
∥∥

2

Then let y = V>x. Since V is orthogonal matrix, we have ‖y‖2 =
∥∥V>x

∥∥
2

= ‖x‖2 = 1. Hence,

sup
‖x‖2=1

∥∥ΣV>x
∥∥

2
= sup
‖y‖2=1

‖Σy‖2 = sup
‖y‖2=1

√√√√ r∑
i=1

(σiyi)2 ≤ σ1.

We attain the maximum by taking y =


1
0
...
0

 and the corresponding x is V


1
0
...
0


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Theorem 1.3 (Cholesky Factorization). The symmetric positive-definite matrix A ∈ Rn×n has the decom-
position of the form

A = LL>

where L ∈ R×n is a lower triangular matrix with real and positive diagonal entries.

Proof. For n = 1, it is trivial. Suppose it holds for n− 1, then any Ã ∈ R(n−1)×(n−1) can be written as

Ã = L̃L̃>

where L̃ ∈ R(n−1)×(n−1) is a lower triangular matrix with real and positive diagonal entries. Consider the
case of n such that

A =

[
Ã a

a> α

]
=

[
L̃L̃> a

a> α

]
∈ Rn×n, where a ∈ Rn−1, α ∈ R.

Let

L1 =

[
L̃−1 0

0 1

]
∈ Rn×n.

We have

L−1
1 AL−>1 =

[
L̃−1 0

0 1

][
L̃L̃> a

a> α

][
L̃−> 0

0 1

]
=

[
I b

b> α

]
, B ∈ Rn×n where b ∈ L̃−1a ∈ Rn−1.

Let

L2 =

[
I 0

−b> 1

]
∈ Rn×n.

Then

L−1
2 BL−>2 =

[
I 0

−b> 1

][
I b

b> α

][
I −b

0 1

]
=

[
I 0

0 α− b>b

]
.

Since A is positive-definite, we have

α− b>b = α− a>L̃−>L̃−1a = α− a>L̃−>L̃−1a = α− a>Ã−1a > 0.

Let α− b>b = λ2, where λ > 0. Hence, we have[
I 0

0 α− b>b

]
= L3L

>
3 , where L3 =

[
I 0

0 λ

]

which means A = LL> ∈ Rn×n where L = L1L2L3 ∈ Rn×n is a lower triangular matrix with real and
positive diagonal entries.

Theorem 1.4. Suppose ∇2f(x) is continuous in an open neighborhood of x∗ and that ∇f(x∗) = 0 and
∇2f(x∗) � 0. Then x∗ is a strict local minimizer of f .

Proof. Because the Hessian is continuous and positive definite at x∗, we can choose a radius r > 0 so that
∇2f(x) remains positive definite for all x in the open ball D = {z : ‖z− x∗‖2 < r}. Taking any nonzero
vector p with ‖p‖2 < r, we have x∗ + p ∈ D and so

f(x∗ + p) = f(x∗) + p>∇f(x∗) +
1

2
p>∇2f(z)p = f(x∗) +

1

2
p>∇2f(z)p,

where z = x∗+tp for some t ∈ (0, 1). Since z ∈ D, we have p>∇2f(z)p > 0, and therefore f(x∗+p) > f(x∗),
giving the result.
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Theorem 1.5. Suppose x∗ is a local minimizer of twice differentiable f(x) and ∇2f(x) is continuous in an
open neighborhood of x∗, then ∇2f(x∗) = 0 and ∇2f(x∗) � 0.

Proof. Suppose for contradiction that ∇f(x∗) 6= 0. Define the vector p = −∇f(x∗), which leads to that
p>∇f(x∗) < 0. Because ∇f is continuous near x∗, there is a scalar T > 0 such that

p>∇f(x∗ + tp) < 0,

for all for any t ∈ [0, T ]. We have by Taylor’s theorem that

f(x∗ + t̄p) = f(x∗) + t̄p>∇f(x∗ + tp),

for some t ∈ (0, t̄). Therefore, f(x∗ + t̄p) < f(x∗) for all t̄ ∈ (0, T ]. We have found a direction leading away
from x∗ along which f decreases, so x∗ is not a local minimizer, and we have ∇2f(x) = 0.

For contradiction, assume that ∇2f(x∗) is not positive semidefinite. Then we can choose a vector p such
that p>∇2f(x∗)p < 0. Because ∇2f(x) is continuous near x∗, there is a scalar T > 0 such that

p>∇2f(x∗ + tp)p < 0

for all t ∈ [0, T ]. By doing a Taylor series expansion around x∗, we have for all t̄ ∈ (0, T ] and some t ∈ (0, t̄)
that

f(x∗ + t̄p) = f(x∗) + t̄p>∇f(x∗) +
1

2
t̄2p>∇2(x∗ + tp)t̄2p < f(x∗).

We have found a direction from x∗ along which f is decreasing, and so again, x∗ is not a local minimizer.

Theorem 1.6. Given A ∈ Rm×n and b ∈ Rm, the solution of minimization problem

min
x∈Rn

f(x) ,
1

2
‖Ax− b‖22 .

is x̂ = A†b + (I−A†A)y, where y ∈ Rn

Proof. The Hessian of f(x) is A>A � 0, which means f(x) is convex. Let A = UrΣrV
>
r be the condense

SVD, where r is the rank of A. Since ∇f(x) = A>Ax−A>b, we only needs to solve the linear system

A>Ax−A>b = 0.

We denote the solution of A>Ax−A>b = 0 be

X =
{
x : A>Ax−A>b = 0

}
.

We can verify that x̂ = A†b + (I−A†A)y is the solution of the linear system because

A>Ax̂−A>b

=A>A
(
A†b + (I−A†A)y

)
−A>b

=A>(AA† − I)b + A>A
(
I−A†A

)
y

=VrΣrU
>
r (UrΣrV

>
r VrΣ

−1
r U>r − I)b + VrΣrU

>
r UrΣrV

>
r

(
I−VrΣ

−1
r U>r UrΣrV

>
r

)
y

=VrΣrU
>
r (UrU

>
r − I)b + VrΣ

2
rV
>
r

(
I−VrV

>
r

)
y

=VrΣr(U
>
r −U>r )b + VrΣ

2
r

(
V>r −V>r

)
y

=0.

Hence, we have X1 ⊆ X , where X1 =
{
x : x = A†b + (I−A†A)y, y ∈ Rn

}
.

We also have

A>Ax−A>b = 0
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⇐⇒VrΣ
2
rV
>
r x−VrΣrU

>
r b = 0

⇐⇒Σ2
rV
>
r x−ΣrU

>
r b = 0

⇐⇒V>r x = Σ−1
r U>r b

⇐⇒VrV
>
r x = VrΣ

−1
r U>r b

⇐⇒x− (I−VrV
>
r )x = A†b

⇐⇒x = A†b + (I−VrV
>
r )x

Hence, we have X =
{
x : x = A†b + (I−VrV

>
r )x

}
⊆ X1. In conclusion, we have X = X1.

2 The Multivariate Normal Distributions

Statistical Independence If F (x, y) = F (x)G(y), we have

f(x, y) =
∂2F (x, y)

∂x∂y
=
∂2F (x)G(y)

∂x∂y

=
dF (x)

dx

dG(y)

dy

=f(x)g(y).

If f(x, y) = f(x)g(y), we have

F (x, y) =

∫ y

−∞

∫ x

−∞
f(u, v)dudv =

∫ y

−∞

∫ x

−∞
f(u)g(v) dudv

=

∫ y

−∞

∫ x

−∞
f(u, v)dudv =

∫ x

−∞
f(u) du

∫ y

−∞
g(v) dv

=F (x)G(y).

Uncorrelated does not means independent Let X ∼ U(−1, 1) and

Y =

{
X, X > 0

−X, X ≤ 0

Show X and Y are uncorrelated but they are NOT independent.

Conditional Distributions Let y1 = y, y2 = y + ∆. Then for a continuous density, the mean value
theorem implies ∫ y+∆y

y

g(v) dv = g(y∗)∆y,

where y ≤ y∗ ≤ y + ∆y. We also have∫ y+∆y

y

f(u, v) dv = f(u, y∗(u))∆y,

where y ≤ y∗(u) ≤ y + ∆y. Connecting above results to

Pr{x1 ≤ X ≤ x2 | y1 ≤ Y ≤ y2} =

∫ x2

x1

∫ y2
y1
f(u, v) dv du∫ y2

y1
g(v)dv
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with y1 = y and y2 = y + ∆y, we have

Pr{x1 ≤ X ≤ x2 | y ≤ Y ≤ y + ∆y}

=

∫ x2

x1

∫ y+∆y

y
f(u, v) dv du∫ y+∆y

y
g(v) dv

=

∫ x2

x1
f(u, y∗(u))∆y du

g(y∗)∆y

=

∫ x2

x1

f(u, y∗(u))

g(y∗)
du.

(1)

For y such that g(y) > 0, we define Pr{x1 ≤ X ≤ x2 | Y = y}, the probability that X lies between x1 and
x2, given that Y is y, as the limit of (1) as ∆y → 0. Thus

Pr{x1 ≤ X ≤ x2 | Y = y} =

∫ x2

x1

f(u, y)

g(y)
du =

∫ x2

x1

f(u | y) du. (2)

Transform of Variables Let the density of X1, . . . , Xp be f(x1, . . . , xp). Consider the p real-valued
functions u : Rp → Rp such that

yi = ui(x1, . . . , xp), i = 1, . . . , p.

Assume the transformation u from the x-space to the y-space is one-to-one, then the inverse transformation
is u−1 such that

xi = u−1
i (y1, . . . , yp), i = 1, . . . , p.

Let the random variables Y1, . . . , Yp be defined by

Yi = ui(X1, . . . , Xp), i = 1, . . . , p,

and the density of Y1, . . . , Yp be g(y). Then we have∫
u(Ω)

g(y)dy =

∫
Ω

g (u(x)) abs(|J(x)|)dx, (3)

and

f(x) = g (u(x)) abs(|J(x)|), (4)

where the Jacobin matrix is

J(x) =



∂u1

∂x1

∂u1

∂x2
. . .

∂u1

∂xp
∂u2

∂x1

∂u2

∂x2
. . .

∂u2

∂xp
...

...
...

∂up
∂x1

∂up
∂x2

. . .
∂up
∂xp


.

A roughly proof for above results:

• If A ∈ Rp×p and S ⊂ Rp is a measurable set, then m(AS) = |det(A)|m(S). Let A = UΣV> where
U and V are orthogonal and Σ is diagonal with nonnegative entries. Multiplying by V> doesn’t
change the measure of S. Multiplying by Σ scales along each axis, so the measure gets multiplied by
|det(Σ)| = |det(A)|. Multiplying by U doesn’t change the measure.
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• We consider the probability of x in Ω and y in u(Ω); and partition Ω into {Ωi}i. Then∫
u(Ω)

g(y)dy

=
∑
i

g(u(xi))m (u(Ωi))

≈
∑
i

g(u(xi))m(u(xi) + J(xi)(Ωi − xi))

=
∑
i

g(u(xi))m(J(xi)Ωi)

=
∑
i

g(u(xi))abs(|J(xi)|)m(Ωi)

≈
∫

Ω

g(u(x))abs(|J(x)|)dx.

• Consider notation Ω such that ∫
Ω

=

∫ x′1

x1

. . .

∫ x′p

xp

where x1 ≤ x′1, x2 ≤ x′2, . . . , xp ≤ x′p. Then the notation u(Ω) in the integral should consider the order∫
u(Ω)

=

∫ max{u1(x1),u1(x′1)}

min{u1(x1),u1(x′1)}
. . .

∫ max{up(xp),up(x′p)}

min{up(xp),up(x′p)}

By using even tinier subsets Ωi, the approximation would be even better so we see by a limiting argument
that we actually obtain (3). On the other hand, we have (f is density functions of x on Ω; g is density
function of y on u(Ω); y = u(x) means x and y = u(x) are one-to-one mapping).∫

Ω

f(x)dx =

∫
u(Ω)

g(y)dy =

∫
Ω

g(u(x))abs(|J(x)|)dx.

Since it holds for any Ω, then

f(x) = g(u(x))abs(|J(x)|).

Lemma 2.1. If Z is an m× n random matrix, D is an l×m real matrix, E is an n× q real matrix, and F
is an l × q real matrix, then

E[DZE + F] = DE[Z]E + F.

Proof. The element in the i-th row and j-th column of E[DZE + F] is

E

∑
h,g

dihzhgegj + fij

 =
∑
h,g

dihE[zhg]egj + fij

which is the element in the i-th row and j-th column of DE[Z]E + F.

Lemma 2.2. If y = Dx + f ∈ Rl, where D is an l ×m real matrix, x ∈ Rm is a random vector, then

E[y] = DE[x] + f and Cov[y] = DCov[x]D>.
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Proof. We have

Cov(y)

=E
[
(y − E[y])(y − E[y])>

]
=E

[
(Dx + f − E[DE[x] + f ])(Dx + f − E[DE[x] + f ])>

]
=E[(Dx−DE[x])(Dx−DE[x])>]

=E[D(x− E[x])(x− E[x])>D>]

=DE[(x− E[x])(x− E[x])>]D>

=DCov[x]D>.

The Density Function of Multivariate Normal Distribution Let the spectral decomposition of A
be A = UΛU>, then we take C = UΛ−1/2 and it satisfies C>AC = I and C is non-singular. Define
y = C−1(x− b), then

K−1 =

∫ +∞

−∞
. . .

∫ +∞

−∞
exp

(
−1

2
(x− b)>A(x− b)

)
dx1 . . . dxp

=
1

det(C−1)

∫ +∞

−∞
. . .

∫ +∞

−∞
exp

(
−1

2
y>y

)
dy1 . . . dyp

= det(C)

∫ +∞

−∞
. . .

∫ +∞

−∞
exp

(
−1

2

n∑
i=1

y2
i

)
dy1 . . . dyp

= det(A−
1
2 )

∫ +∞

−∞
. . .

∫ +∞

−∞
exp

(
−1

2
y2
p

)
. . . exp

(
−1

2
y2

1

)
dy1 . . . dyp

= det(A−
1
2 )(2π)

p
2 .

Directly consider the expectation and variance of x is not easy, so we first consider the ones of y. The
relation y = C−1(x− b) means x = Cy + b and E[x] = CE[y] + b. The transformation implies the density
function of y is

g(y) = det(C)K exp

(
−1

2
(Cy + b− b)>A(Cy + b− b)

)
dy1 . . . dyp

= det(C)K exp

(
−1

2
y>C>ACy

)
dy1 . . . dyp

=K det(C) exp

(
−1

2
y>y

)
dy1 . . . dyp

=
det(C)√

(2π)p det(A)
exp

(
−1

2

p∑
i=1

y2
i

)
dy1 . . . dyp

=
1

(2π)p/2
exp

(
−1

2

p∑
i=1

y2
i

)
dy1 . . . dyp.

Then for each i = 1, . . . , p, we have

E[yi] =
1

(2π)p/2

∫ +∞

−∞
. . .

∫ +∞

−∞
yi exp

−1

2

p∑
j=1

y2
j

 dy1 . . . dyp

=

(
1√
2π

∫ +∞

−∞
yi exp

(
−1

2
y2
i

)
dyi

) p∏
j=1,i6=j

1√
2π

∫ +∞

−∞
exp

(
−1

2
y2
j

)
dyj
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=
1√
2π

∫ +∞

−∞
yi exp

(
−1

2
y2
i

)
dyi = 0.

Thus E[y] = 0 and E[x] = CE[y] + b = µ implies b = µ.
The relation x = Cy + b means Cov[x] = CCov[y]C> = CE[yy>]C>. For each i 6= j, we have

E[yiyj ]

=
1

(2π)p/2

∫ +∞

−∞
. . .

∫ +∞

−∞
yiyj exp

(
−1

2

p∑
h=1

y2
h

)
dy1 . . . dyp

=

(
1√
2π

∫ +∞

−∞
yi exp

(
−1

2
y2
i

)
dyi

)(
1√
2π

∫ +∞

−∞
yj exp

(
−1

2
y2
j

)
dyj

) p∏
j=1,h6=i,j

1√
2π

∫ +∞

−∞
exp

(
−1

2
y2
h

)
dyh

=0

We also have

E[y2
i ]

=
1

(2π)p/2

∫ +∞

−∞
. . .

∫ +∞

−∞
y2
i exp

(
−1

2

p∑
h=1

y2
h

)
dy1 . . . dyp

=

(
1√
2π

∫ +∞

−∞
y2
i exp

(
−1

2
y2
i

)
dyi

) p∏
j=1,h 6=i

1√
2π

∫ +∞

−∞
exp

(
−1

2
y2
h

)
dyh = 1,

where the last step is due to

1√
2π

∫ +∞

−∞
exp

(
−1

2
y2
h

)
dyh

corresponds to the pdf of yh ∼ N (0, 1) and

1√
2π

∫ +∞

−∞
y2
i exp

(
−1

2
y2
i

)
dyi

corresponds to the variance of yi ∼ N (0, 1). Hence, it holds that

E[(yi − E[yi])(yj − E[yj ])] =

{
0, i 6= j,

1, i = j.

which implies Σ = Cov[x] = CE[yy>]C> = CC>. Since C>AC = I, we obtain A−1 = CC> and
Σ = A−1 � 0.

Theorem 2.1. Let x ∼ Np(µ,Σ), with Σ ∈ Rp×p and Σ � 0. Then

y = Cx

is distributed according to Np(Cµ,CΣC>) for non-singular C ∈ Rp×p.

Proof. Let f(x) be the density of x such that

f(x) = n(µ | Σ) =
1√

(2π)p det(Σ)
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
and g(y) be the density function of y. The relation x = C−1y implies g(y) = f(u−1(y))|det(J−1(y))| with
u(x) = Cx, u−1(y) = C−1y and J−1(y) = C−1. Hence, we have

g(y)
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=f(C−1y)|det(C−1)|

=
1√

(2π)p det(Σ)
exp

(
−1

2
(C−1y − µ)>Σ−1(C−1y − µ)

)
|det(C−1)|

=
|det(C−1)|√
(2π)p det(Σ)

exp

(
−1

2
(y −Cµ)>C−>Σ−1C−1(y −Cµ)

)
=

1√
(2π)p det(CΣ−1C>)

exp

(
−1

2
(y −Cµ)>

(
CΣ−1C>

)−1
(y −Cµ)

)
=n(Cµ | CΣ−1C>),

where we use the fact

|det(C−1)|√
det(Σ)

=
1√

|det(C)|2 det(Σ)
=

1√
|det(C)|det(Σ)|det(C>)|

=
1√

|det(CΣC>)|
.

Theorem 2.2. If x = [x1, . . . , xp]
> have a joint normal distribution. Let

1. x(1) = [x1, . . . , xq]
>,

2. x(2) = [xq+1, . . . , xp]
>.

for q < p. A necessary and sufficient condition for x(1) and x(2) to be independent is that each covariance
of a variable from x(1) and a variable from x(2) is 0.

Proof. Let

x =

[
x(1)

x(2)

]
∼ N (µ,Σ), where µ =

[
µ(1)

µ(2)

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
such that

• µ(1) = E
[
x(1)

]
,

• µ(2) = E
[
x(2)

]
,

• Σ11 = E
[(

x(1) − µ(1)
) (

x(1) − µ(1)
)>]

,

• Σ22 = E
[(

x(2) − µ(2)
) (

x(2) − µ(2)
)>]

,

• Σ12 = Σ>21 = E
[(

x(1) − µ(1)
) (

x(2) − µ(2)
)>]

.

Sufficiency (uncorrelated =⇒ independent): The random vectors x(1) and x(2) are uncorrelated means

Σ =

[
Σ11 0
0 Σ22

]
and Σ−1 =

[
Σ−1

11 0
0 Σ−1

22

]
.

The quadratic form of n(x | µ,Σ) is

(x− µ)>Σ−1(x− µ)

=
[
(x(1) − µ(1))> (x(2) − µ(2))>

] [Σ−1
11 0
0 Σ−1

22

] [
x(1) − µ(1)

x(2) − µ(2)

]
=(x(1) − µ(1))>Σ−1

11 (x(1) − µ(1)) + (x(2) − µ(2))>Σ−1
22 (x(2) − µ(2))

9



and we have det(Σ) = det(Σ11) det(Σ22). Then

n(µ | Σ)

=
1√

(2π)p det(Σ)
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
=

1√
(2π)q det(Σ11)

exp

(
−1

2
(x(1) − µ(1))>Σ−1(x(1) − µ(1))

)
· 1√

(2π)p−q det(Σ22)
exp

(
−1

2
(x(2) − µ(2))>Σ−1

22 (x(2) − µ(2))

)
=n(µ(1) | Σ(1))n(µ(2) | Σ(2)).

Thus the marginal distribution of x(1) is N (µ(1),Σ11) and the marginal distribution of x(2) is N (µ(2),Σ22).
We have prove two variables are independent.

Necessity (independent =⇒ uncorrelated): Let 1 ≤ i ≤ q and q + 1 ≤ j ≤ p. The Independence
means

σij =E [(xi − µi)(xj − µj)]

=

∫ +∞

−∞
. . .

∫ +∞

−∞
(xi − µi)(xj − µj)f(x1, . . . , xp) dx1 . . . dxp

=

∫ +∞

−∞
. . .

∫ +∞

−∞
(xi − µi)(xj − µj)f(x1, . . . , xq)f(xq+1, . . . , xp) dx1 . . . dxp

=

∫ +∞

−∞
. . .

∫ +∞

−∞
(xi − µi)f(x1, . . . , xq)dx1 . . . dxq ·

∫ +∞

−∞
. . .

∫ +∞

−∞
(xj − µj)f(xq+1, . . . , xp)dxq+1 . . . dxp

=0.

Theorem 2.3. If x ∼ N (µ,Σ) with Σ � 0, the marginal distribution of any set of components of x is
multivariate normal with means, variances, and covariances obtained by taking the corresponding components
of µ and Σ, respectively.

Proof. We shall make a non-singular linear transformation B to subvectors

y(1) =x(1) + Bx(2)

y(2) =x(2)

leading to the components of y(1) are uncorrelated with the ones of y(2). The matrix B should satisfy

0 =E
[(

y(1) − E
[
y(1)

])(
y(2) − E

[
y(2)

])>]
=E

[(
x(1) + Bx(2) − E

[
x(1) + Bx(2)

])(
x(2) − E

[
x(2)

])>]
=E

[(
x(1) − E

[
x(1)] + B

(
x(2) − E

[
x(2)

]))(
x(2) − E

[
x(2)

])>]
=E

[(
x(1) − E

[
x(1)]

)(
x(2) − E

[
x(2)

])>]
+ B · E

[(
x(2) − E

[
x(2)

]))(
x(2) − E

[
x(2)

])>]
=Σ12 + BΣ22.

Thus B = −Σ12Σ
−1
22 and y(1) = x(1) −Σ12Σ

−1
22 x(2). The vector

y =

[
y(1)

y(2)

]
=

[
I −Σ12Σ

−1
22

0 I

] [
x(1)

x(2)

]
=

[
I −Σ12Σ

−1
22

0 I

]
x

10



is a non-singular transform of x, and therefore has a normal distribution with

E
[
y(1)

y(2)

]
=

[
I −Σ12Σ

−1
22

0 I

]
E[x] =

[
I −Σ12Σ

−1
22

0 I

] [
µ(1)

µ(2)

]
=

[
µ(1) −Σ12Σ

−1
22 µ

(2)

µ(2)

]
=

[
ν(1)

ν(2).

]
Since the transform is non-singular, we have

Cov

[
y(1)

y(2)

]
=

[
I −Σ12Σ

−1
22

0 I

] [
Σ11 Σ12

Σ21 Σ22

] [
I 0

−Σ−1
22 Σ21 I

]
=

[
Σ11 −Σ12Σ

−1
22 Σ21 0

Σ21 Σ22

] [
I 0

−Σ−1
22 Σ21 I

]
=

[
Σ11 −Σ12Σ

−1
22 Σ21 0

0 Σ22

]
Thus y(1) and y(2) are independent, which implies the marginal distribution of x(2) is N (µ(2),Σ22). Because
the numbering of the components of x is arbitrary, we have proved this theorem.

Singular Normal Distribution The mass is concentrated on a linear set S. For any x 6∈ S, there exists
B(x, r) such that r > 0 and B∩S = ∅. If the distribution of x has density function f , then f(x) = 0 holds for
any x 6∈ S. Since the measure of S is zero, we have f(x) = 0 almost everywhere, which means the integration
of f(x) on the whole space is 0.

Conditional Distribution by Schur Complement Recall that[
A B
C D

]
=

[
I BD−1

0 I

] [
A−BD−1C 0

0 D

] [
I 0

D−1C I

]
,

which directly means the inverse of covariance of Normal distribution.

Theorem 2.4. Let x ∼ Np(µ,Σ). Then

z = Dx

is distributed according to Nq(Dµ,DΣD>) for any D ∈ Rq×p.

Proof. It is easy to verify E[z] = Dµ and Cov[z] = DΣD>. Hence, we only need to show z follows normal
distribution.

Since x ∼ Np(µ,Σ), it can be presented as

x = Ay + λ

where A ∈ Rp×r, r is the rank of Σ and y ∼ Nr(ν,T) with non-singular T � 0. We can write

z = DAy + Dλ,

where DA ∈ Rq×r. If the rank of DA is r, the formal definition of a normal distribution that includes the
singular distribution implies z follows normal distribution.

If the rank of DA is less than r, say s, then

E = Cov[z] = DACov[y]A>D> = DATA>D> ∈ Rq×q

is rank of s. There is a non-singular matrix

F =

[
F1

F2

]
∈ Rq×q

11



with F1 ∈ Rs×q and F2 ∈ R(q−s)×r such that

FEF> =

[
F1EF>1 F1EF>2
F2EF>1 F2EF>2

] [
(F1DA)T(F1DA)> (F1DA)T(F2DA)>

(F2DA)T(F1DA)> (F2DA)T(F2DA)>

]
=

[
Is 0
0 0

]
.

Thus (F1DA)T(F1DA)> = Is means F1DA is of rank s and the non-singularity of T means F2DA = 0.
Hence, we have

Fz‘ = F(DAy + Dλ) =

[
F1

F2

]
DAy + FDλ =

[
F1DAy
F2DAy

]
+ FDλ =

[
F1DAy

0

]
+ FDλ.

Let u1 = F1DAy ∈ Rs. Since F1DA ∈ Rs×r is of rank s ≤ r, we conclude u1 has a non-singular normal
distribution. Let F−1 = [G1,G2], where G1 ∈ Rq×s and G2 ∈ Rq×(q−s). Then

z = F−1

([
u1

0

]
+ FDλ

)
= [G1,G2]

[
u1

0

]
+ Dλ = G1u1 + Dλ

which is of the form of the formal definition of normal distribution.

Theorem 2.5. For x ∼ Np(µ,Σ) and every vector α ∈ R(p−q), we have

Var
[
x

(11.2)
i

]
≤ Var

[
xi −α>x(2)

]
,

for i = 1, . . . , q, where x
(11.2)
i and xi are the i-th entry of x(11.2) and the i-th entry of x respectively.

Proof. We denote

B =

β
>
(1)

...
β>(q)

 .
Since x(11.2) is uncorrelated with x(2) and

E[x(11.2)] = E[x(1) − (µ(1) + B(x(2) − µ(2)))] = E[x(1)]− µ(1) + B(E[x(2)]− µ(2)) = 0,

we have

Var
[
xi −α>x(2)

]
=E
[
xi −α>x(2) − E[xi −α>x(2)]

]2
=E
[
xi − µi −α>

(
x(2) − µ(2)

)]2
=E
[
x

(11.2)
i + β>(i)(x

(2) − µ(2))−α>
(
x(2) − µ(2)

)]2
=E
[
x

(11.2)
i − E[x

(11.2)
i ] + (β(i) −α)>

(
x(2) − µ(2)

)]2
=Var

[
x

(11.2)
i

]
+ E

[(
x

(11.2)
i − E[x

(11.2)
i ]

)
(β(i) −α)>

(
x(2) − µ(2)

)]
+ E

[
(β(i) −α)>

(
x(2) − µ(2)

)]2
=Var

[
x

(11.2)
i

]
+ (β(i) −α)>E

[(
x(2) − µ(2)

)(
x(2) − µ(2)

)>]
(β(i) −α)

=Var
[
x

(11.2)
i

]
+ (β(i) −α)>Cov

(
x(2)

)
(β(i) −α)

≥Var
[
x

(11.2)
i

]
,

where the quadratic form attains its minimum of 0 at β(i) = α.

Remark 2.1. Observe that

E[xi] = µi + α>
(
x(2) − µ(2)

)
Hence, the second equality in the proof means µi + β>(i)(x

(2) − µ(2)) is the best linear predictor of xi in the

sense that of all functions of x(2) of the form α>x(2) + c, the mean squared error of the above is a minimum.
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Theorem 2.6. Under the setting of Theorem 2.5, we have

Corr
(
xi,β

>
(i)x

(2)
)
≥ Corr

(
xi,α

>x(2)
)
.

Proof. Since the correlation between two variables is unchanged when either or both is multiplied by a
positive constant, we can assume that

E
[
α>x(2)

]2
= E

[
β>(i)x

(2)
]2
.

Using Theorem 2.5, we have

Var
[
x

(11.2)
i

]
≤ Var

[
xi −α>x(2)

]
⇐⇒E

[
xi − µi − β>(i)(x

(2) − µ(2)))
]2 ≤ E

[
xi − µi −α>

(
x(2) − µ(2)

)]2
⇐⇒ Var[xi]− E

[
(xi − µi)β>(i)

(
x(2) − µ(2)

)]
+ Var

[
β>(i)x

(2)
]

≤ Var[xi]− E
[
(xi − µi)α>

(
x(2) − µ(2)

)]
+ Var

[
α>x(2)

]
⇐⇒

E
[
(xi − µi)α>

(
x(2) − µ(2)

)]√
Var[xi]

√
Var
[
α>x(2))

] ≤
E
[
(xi − µi)β>(i)

(
x(2) − µ(2)

)]
√

Var[xi]
√

Var
[
β>x(2))

]
⇐⇒

Cov
[
xi,α

>x(2)
]√

Var[xi]
√

Var
[
α>x(2))

] ≤ E
[
xi,β

>
(i)x

(2)
]

√
Var[xi]

√
Var
[
β>x(2))

]

Theorem 2.7. Let x =

[
x(1)

x(2)

]
. If x(1) and x(2) are independent and g(x) = g(1)(x(1))g(2)(x(2)), its charac-

teristic function is

E
[
g(x)

]
= E

[
g(1)(x(1))

]
E
[
g(2)(x(2))

]
.

Proof. Let f(x) = f (1)(x(1))f (2)(x(2)) be the density of x. If g(x) is real-valued, we have

E[g(x)]

=

∫ +∞

−∞
. . .

∫ +∞

−∞
g(x)f(x) dx1 . . . dxp

=

∫ +∞

−∞
. . .

∫ +∞

−∞
g(1)(x(1))g(2)(x(2))f (1)(x(1))f (2)(x(2)) dx1 . . . dxp

=

∫ +∞

−∞
. . .

∫ +∞

−∞
g(1)(x(1))f (1)(x(1)) dx1 . . . dxq ·

∫ +∞

−∞
. . .

∫ +∞

−∞
g(2)(x(2))f (2)(x(2)) dxq+1 . . . dxp

=E
[
g(1)(x(1))

]
E
[
g(2)(x(2))

]
.

If g(x) is complex-valued, then we have

g(x)

=
[
g

(1)
1 (x(1)) + i g

(1)
2 (x(1))

][
g

(2)
1 (x(2)) + i g

(2)
2 (x(2))

]
=g

(1)
1 (x(1))g

(2)
1 (x(2))− g(1)

2 (x(1))g
(2)
2 (x(2)) + i

[
g

(1)
1 (x(1))g

(2)
2 (x(2)) + g

(1)
2 (x(1))g

(2)
1 (x(2))

]
and

E
[
g(x)

]
=E
[
g

(1)
1 (x(1))g

(2)
1 (x(2))

]
− E

[
g

(1)
2 (x(1))g

(2)
2 (x(2))

]
+ iE

[
g

(1)
1 (x(1))g

(2)
2 (x(2)) + g

(1)
2 (x(1))g

(2)
1 (x(2))

]
13



=E
[
g

(1)
1 (x(1))

]
E
[
g

(2)
1 (x(2))

]
− E

[
g

(1)
2 (x(1))

]
E
[
g

(2)
2 (x(2))

]
+ iE

[
g

(1)
1 (x(1))

]
E
[
g

(2)
2 (x(2))] + iE

[
g

(1)
2 (x(1))

]
E
[
g

(2)
1 (x(2))

]
=
[
E
[
g

(1)
1 (x(1))

]
+ iE

[
g

(1)
2 (x(1))

]][
E
[
g

(2)
1 (x(2))

]
+ iE

[
g

(2)
2 (x(2))

]]
=E
[
g(1)(x(1))

]
E
[
g(2)(x(2))

]
.

Theorem 2.8. The characteristic function of x distributed according to Np(µ,Σ) is

φ(t) = exp

(
i t>µ− 1

2
t>Σt

)
.

for every t ∈ Rp.

Proof. For standard normal distribution y ∼ Np(0, I), we have

φ0(t) =E
[
exp

(
i t>y

)]
=

∫ +∞

−∞
. . .

∫ +∞

−∞

exp(i t>y)

(2π)p/2
exp

(
−1

2
y>y

)
dy1 . . . dyp

=

p∏
j=1

(∫ +∞

−∞

exp(i tjyj)

(2π)p/2
exp

(
−1

2
y2
j

)
dyj

)

=

p∏
j=1

(∫ +∞

−∞

1

(2π)p/2
exp

(
−1

2
(yj − i tj)

2 − 1

2
t2j

)
dyj

)

=

p∏
j=1

(
exp

(
−1

2
t2j

)∫ +∞

−∞

1

(2π)p/2
exp

(
−1

2
z2
j

)
dzj

)

=

p∏
j=1

(
exp

(
−1

2
t2j

))
= exp

(
−1

2
t>t

)
.

For the general case of x ∼ Np(µ,Σ), we can write x = Ay + µ such that y ∼ Np(0, I) and Σ = AA>.
Then we have

φ(t) =E
[
exp(i t>x)

]
=E

[
exp(i t>(Ay + µ))

]
= exp

(
i t>µ

)
E
[
exp(i (A>t)>y)

]
= exp

(
i t>µ

)
φ0

(
A>t

)
= exp

(
i t>µ

)
exp

(
−1

2
t>AA>t

)
= exp

(
i t>µ− 1

2
t>Σt

)
.

Remark 2.2. Denote the characteristic function of x ∈ N (µ,Σ) as φx(t) = exp
(
i t>µ− 1

2t>Σt
)
. For

z = Dx, the characteristic function of z is

φz(t) = E
[
exp(i t>z)

]
= E

[
exp(i t>Dx)

]
= E

[
exp(i (D>t)>x)

]
= exp

(
i t>(Dµ)− 1

2
t>(D>ΣD)t

)
which implies z ∼ N (Dµ,D>ΣD) and we prove Theorem 2.4.
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Theorem 2.9. If every linear combination of the components of a random vector y is normally distributed,
then y is normally distributed.

Proof. Let y is a random vector with E[y] = µ and Cov[y] = Σ. Suppose the univariate random variable
u>y (linear combination of y) is normal distributed for any u ∈ Rp. The characteristic function of u>y is

φu>y(t) =E
[
exp(i tu>y)

]
= exp

(
i tE[u>y]− 1

2
t2Cov(u>y)

)
= exp

(
i tu>µ− 1

2
t2u>Σu

)
.

Set t = 1, then we have

E
[
exp(i u>y)

]
= exp

(
i u>µ− 1

2
u>Σu

)
.

which implies the characteristic function of y is

φy(u) = exp

(
i u>µ− 1

2
u>Σu

)
,

that is, y ∼ N (µ,Σ).

Theorem 2.10. Let x ∼ Np(µ1,Σ1), y ∼ Np(µ2,Σ2) and z = x+y. Suppose that x and y are independent.
Prove z ∼ Np(µ1 + µ2,Σ1 + Σ2).

Proof. Let φx, φy and φz be the characteristic functions of x, y and z. Then we have

φz(t)

=E
[
exp

(
i t>(x + y)

)]
=E

[
exp

(
i t>x

)]
E
[
exp

(
i t>y

)]
= exp

(
−i t>µ1 +

1

2
t>Σ1t

)
exp

(
−i t>µ2 +

1

2
t>Σ2t

)
= exp

(
−i t>(µ1 + µ2) +

1

2
t>(Σ1 + Σ2)t

)
,

which is the characteristic function of Np(µ1 + µ2,Σ1 + Σ2).

3 Estimation of the Mean Vector and the Covariance

Theorem 3.1. If x1,x2, . . . ,xN constitute a sample from N (µ,Σ) with p < N , the maximum likelihood
estimators of µ and Σ are

µ̂ = x̄ =
1

N

N∑
α=1

xα and Σ̂ =
1

N

N∑
α=1

(xα − x̄)(xα − x̄)>

respectively.

Proof. The logarithm of the likelihood function is

lnL = −PN
2

ln 2π − N

2
ln (det(Σ))− 1

2

N∑
α=1

(xα − µ)>Σ−1(xα − µ).
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We have

N∑
α=1

(xα − µ)>Σ−1(xα − µ)

=

N∑
α=1

(xα − x̄)>Σ−1(xα − x̄) +

N∑
α=1

(x̄− µ)>Σ−1(xα − x̄)

+

N∑
α=1

(xα − x̄)>Σ−1(x̄− µ) +

N∑
α=1

(x̄− µ)>Σ−1(x̄− µ)

=

N∑
α=1

(xα − x̄)>Σ−1(xα − x̄) +

N∑
α=1

(x̄− µ)>Σ−1(x̄− µ)

≥
N∑
α=1

(xα − x̄)>Σ−1(xα − x̄),

where the equality holds when µ = x̄. Hence, the estimator of means should be µ̂ = x̄.
Now, we only need to study how to maximize

−pN
2

ln 2π − N

2
ln (det(Σ))− 1

2

N∑
α=1

(xα − x̄)>Σ−1(xα − x̄).

We let Ψ = Σ−1 and

l(Ψ) =− PN

2
ln 2π − N

2
ln
(
det(Ψ−1)

)
− 1

2

N∑
α=1

(xα − x̄)>Ψ(xα − x̄)

=− PN

2
ln 2π +

N

2
ln (det(Ψ))− 1

2

N∑
α=1

tr
(
(xα − x̄)>Ψ(xα − x̄)

)
=− PN

2
ln 2π +

N

2
ln (det(Ψ))− 1

2

N∑
α=1

tr
(
(xα − x̄)(xα − x̄)>Ψ

)
,

then

∂l(Ψ)

∂Ψ
=

∂

∂Ψ

(
−PN

2
ln 2π +

N

2
ln (det(Ψ))− 1

2

N∑
α=1

tr
(
(xα − x̄)(xα − x̄)>Ψ

))

=
N

2
Ψ−1 − 1

2

N∑
α=1

(xα − x̄)(xα − x̄)>.

We can verify l(Ψ) is concave on the domain of symmetric positive definite matrices, which means the

maximum is taken by
∂f(Ψ)

∂Ψ
= 0, that is,

Σ = Ψ−1 =
1

N

N∑
α=1

(xα − x̄)(xα − x̄)>.

Lemma 3.1. If D ∈ Rp×p is positive definite, the maximum of

f(G) = −N ln det(G)− tr(G−1D)

with respect to positive definite matrices G exists, occurs at G = 1
ND.
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Proof. Let D = EE> and E>G−1E = H. Then we have G = EH−1E>,

det(G) = det(E) det(H−1) det(E>) = det(EE>) det(H−1) =
det(D)

det(H)

and

tr(G−1D) = tr(G−1EE>) = tr(E>G−1E) = tr(H).

Then the function to be maximized (with respect to positive definite H) is

g(H) = −N ln det(D) +N ln det(H)− tr(H).

Let H = TT> here L is lower triangular. Then the maximum of

g(H) =−N ln det(D) +N ln det(H)− tr(H)

=−N ln det(D) +N ln(det(T))2 − tr(TT>)

=−N ln det(D) +N ln

(
p∏
i=1

t2ii

)
−
∑
i≥j

t2ij

=−N ln det(D) +

p∑
i=1

(
N ln(t2ii)− t2ii

)
−
∑
i>j

t2ij

occurs at t2ii = N and tij = 0 for i 6= j; that is H = NI. Then

G =
1

N
D.

Theorem 3.2. Let f(θ) be a real-valued function defined on a set S and let φ be a single-valued function,
with a single-valued inverse, on S to a set S∗. Let

g(θ∗) = f
(
φ−1(θ∗)

)
.

Then if f(θ) attains a maximum at θ = θ0, then g(θ∗) attains a maximum at θ∗ = θ∗0 = φ(θ0). If the
maximum of f(θ) at θ0 is unique, so is the maximum of g(θ∗) at θ∗0.

Proof. By hypothesis f(θ0) ≥ f(θ) for all θ ∈ S. Then for any θ∗ ∈ S∗, we have

g(θ∗) = f
(
φ−1(θ∗)

)
= f(θ) ≤ f(θ0) = g(φ(θ0)) = g(θ∗0).

Thus g(θ∗) attains a maximum at θ∗0 = φ(θ0). If the maximum of f(θ) at θ0 is unique, there is strict
inequality above for θ 6= θ0, and the maximum of g(θ∗) is unique.

Theorem 3.3. If φ : S → S∗ is not one-to-one, we let

φ−1(θ∗) = {θ : θ∗ = φ(θ)}.

and the induced likelihood function

g(θ∗) = sup{f (θ) : θ∗ = φ(θ)}.

If θ = θ̂ maximize f(θ), then θ̂∗ = φ(θ̂) also maximize g(θ∗).
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Proof. The definition means

sup
θ∗∈S∗

g(θ∗) = sup
θ∗∈S∗

sup
θ∗=φ(θ)

f(θ) = sup
θ∈S

f(θ).

The definition of θ̂∗ = φ(θ̂) means

f(θ̂) = sup
θ̂∗=φ(θ)

f(θ) = g(θ̂∗)

Since θ = θ̂ maximize f(θ), we have

g(θ̂∗) = f(θ̂) = sup
θ∈S

f(θ) = sup
θ∗∈S∗

g(θ∗),

which implies θ̂∗ maximize g(θ∗).

Corollary 3.1. If x1, . . . ,xN constitutes a sample from N (µ,Σ), let ρij = σij/(σiσj). Then the maximum
likelihood estimator of ρij is

ρ̂ij =

∑N
α=1(xiα − x̄i)(xjα − x̄j)√∑N

α=1(xiα − x̄i)2

√∑N
α=1(xjα − x̄j)2

Proof. The set of parameters µi = µi, σ
2
i = σii and ρij = σij/

√
σiiσjj is a one-to-one transform of the set of

parameters µ and Σ. Then the estimator of ρ is

ρ̂ij =
σ̂ij√
σ̂iiσ̂jj

=

∑N
α=1(xiα − x̄i)(xjα − x̄j)√∑N

α=1(xiα − x̄i)2

√∑N
α=1(xjα − x̄j)2

.

Theorem 3.4. Suppose x1, . . . ,xN are independent, where xα ∼ Np(µα,Σ). Let C ∈ RN×N be an orthog-
onal matrix, then

yα =

N∑
β=1

cαβxβ ∼ Np(να,Σ),

where να =
∑N
β=1 cαβµβ for α = 1, . . . , N and y1, . . . ,yN are independent.

Proof. The set of vectors y1, . . . ,yN have a joint normal distribution, because the entire set of components
is a set of linear combinations of the components of x1, . . . ,xN , which have a joint normal distribution. The
expected value of yα is

E[yα] = E

 N∑
β=1

cαβxβ

 =

N∑
β=1

cαβE [xβ ] =

N∑
β=1

cαβµβ .

The covariance matrix between yα and yγ is

Cov[yα,yγ ]

=E[(yα − να)(yγ − νγ)>]

=E

 N∑
β=1

cαβ(xβ − µβ)

 N∑
ξ=1

cγξ(xξ − µξ)
>


=

N∑
β=1

N∑
ξ=1

cαβcγξE
[
(xβ − µβ)(xξ − µξ)

>]

18



=

N∑
β=1

N∑
ξ=1

cαβcγξδβξΣ

=

N∑
β=1

cαβcγβΣ,

where

δβξ =

{
1, if β = ξ,

0, if β 6= ξ.

If α = γ, we have
∑N
β=1 cαβcγβ =

∑N
β=1 cαβcαβ = 1; otherwise, we have

∑N
β=1 cαβcγβ = 0. Hence, we have

Cov[yα,yγ ] =

N∑
β=1

cαβcγβΣ = δαγΣ.

The set of vectors y1, . . . ,yN have a joint normal distribution, we have proved Cov[yα] = Σ for α = 1, . . . , N
and y1, . . . ,yN are independent.

Lemma 3.2. If

C =


c11 c12 . . . c1N
c21 c22 . . . c2N
...

...
. . .

...
cN1 cN2 . . . cNN

 =


c>1

c>2

...

c>N

 ∈ RN×N

is orthogonal, then
∑N
α=1 xαx>α =

∑N
β=1 yαy>α where yα =

∑N
β=1 cαβxα for α = 1, . . . , N .

Proof. Let

X =


x>1

x>2

...

x>N

 ∈ RN×p.

We have

N∑
α=1

yαy>α =

N∑
β=1

X>cαc>αX = X>

 N∑
β=1

cαc>α

X = X>
(
C>C

)
X = X>X =

N∑
β=1

xαx>α .

Remark 3.1. We can also write yα = X>cα and Y = CX by defining Y like X.

Theorem 3.5. Let x1, . . . ,xN be independent, each distributed according to N (µ,Σ). Then the mean of
the sample

µ̂ = x̄ =
1

N

N∑
α=1

xα
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is distributed according to N (µ, 1
NΣ) and independent of

Σ̂ =
1

N

N∑
α=1

(xα − x̄)(xα − x̄)>.

Additionally, we have NΣ̂ =
∑N−1
α=1 zαz>α , where zα ∼ N (0,Σ) for α = 1, . . . , N , and z1, . . . , zN−1 are

independent.

Proof. There exists an orthogonal matrix B ∈ Rp×p such that

B =


× × . . . ×
× × . . . ×
...

...
. . .

...

1√
N

1√
N

. . . 1√
N


Let A = NΣ̂ and let zα =

∑N
β=1 bαβxβ , then

zN =

N∑
β=1

bNβxβ =

N∑
β=1

xβ√
N

=
√
N x̄

By Lemma 3.2, we have

A =

N∑
α=1

(xα − x̄)(xα − x̄)>

=

N∑
α=1

xαx>α −
N∑
α=1

xαx̄> −
N∑
α=1

x̄x>α +

N∑
α=1

x̄x̄>

=

N∑
α=1

xαx>α −N x̄x̄> −N x̄x̄> +N x̄x̄>

=

N∑
α=1

xαx>α −N x̄x̄>

=

N∑
α=1

zαz>α − zNz>N

=

N−1∑
α=1

zαz>α

Lemma 3.2 also states zN is independent of z1, . . . , zN−1, then the mean vector x̄ = 1√
N

zN is independent

of A and Σ̂ = 1
NA. Since x̄ = 1√

N
zn = 1√

N

∑N
β=1 bNβxβ , Theorem 3.4 implies

E[x̄] = E

 1√
N

N∑
β=1

bNβxβ

 =
1√
N

N∑
β=1

1√
N

µ = µ, and Cov[x̄] =
1

N
Cov

 N∑
β=1

bNβxβ

 =
1

N
Σ.

Hence, we have x̄ ∼ N
(
µ,

1

N
Σ

)
. For α = 1, . . . , N − 1, we also have

E[zα] = E

 N∑
β=1

bαβxβ

 =

N∑
β=1

bαβE [xβ ] =

N∑
β=1

bαβµ =

N∑
β=1

bαβbNβ
√
Nµ = 0.

and Theorem 3.4 implies zα ∼ N (0,Σ).
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Theorem 3.6. Let x1, . . . ,xN be p-dimensional random vector and they are independent. Denote

x̄ =
1

N

N∑
α=1

xα and Σ̂ =
1

N

N∑
α=1

(xα − x̄)(xα − x̄)>.

If E[x1] = · · · = E[xN ] = µ and Cov[x1] = · · · = Cov[xN ] = Σ, then we have

E
[
Σ̂
]

=
N − 1

N
Σ.

Proof. We have

Σ = Cov[xα] = E
[
(xα − µ)(xα − µ)>

]
= E

[
xαx>α − xαµ

> − µx>α + µµ>
]

= E
[
xαx>α

]
− µµ>

and

1

n
Σ = Cov[x̄] = E[(x̄− E[x̄])(x̄− E[x̄])>] = E[x̄x̄>]− µµ>.

Hence, we obtain

E
[
Σ̂
]

=E

[
1

N

N∑
α=1

(xα − x̄)(xα − x̄)>

]

=E

[
1

N

N∑
α=1

(
xαx>α − x̄x>α − xαx̄> + x̄x̄>

)]

=E

[
1

N

N∑
α=1

xαx>α − x̄x̄>

]
=E

[
xαx>α

]
− E

[
x̄x̄>

]
=Σ + µµ> −

(
1

n
Σ + µµ>

)
=
n− 1

n
Σ.

Theorem 3.7. Using the notation of Theorem 3.1, if N > p, the probability is 1 of drawing a sample so
that

Σ̂ =
1

N

N∑
α=1

(xα − x̄)(xα − x̄)>

is positive definite.

Proof. The proof of Theorem 3.1 shows that A = Z̃>Z̃ where

Z̃ =

 z>1
...

z>N−1

 ∈ R(N−1)×p,

which means rank
(
Σ̂
)

= rank(A) = rank
(
Z̃
)
. Then the probability is 1 of Σ̂ � 0 is equivalent to

Pr
(
rank

(
Z̃
)

= p
)

= 1.
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Since appending rows at the end of Z̃ will not increase its rank, we only needs to consider the case of
N = p+ 1 (N − 1 = p and Z̃ ∈ Rp×p). We have

Pr(z1, . . . , zp are linearly dependent)

≤
p∑
i=1

Pr
(
zi ∈ span{z1, . . . , zi−1, zi, . . . , zp}

)
=pPr

(
z1 ∈ span{z2, . . . , zp}

)
=pE

[
Pr
(
z1 ∈ span{z2, z3, . . . , zp} | z2 = α2, . . . , zp = αp

)]
=pE[0] = 0

The second equality is obtained as follows

Pr
(
z1 ∈ span{z2, . . . , zp}

)
=

∫ ∞
−∞
· · ·
∫ ∞
−∞

Pr
(
z1 ∈ span{z2, . . . , zp}, z2 = α2, . . . , zp = αp

)
dα2 . . . dαp

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

Pr
(
z1 ∈ span{z2, . . . , zp} | z2 = α2, . . . , zp = αp

)
Pr
(
z2 = α2, . . . , zp = αp

)
dα2 . . . dαp

=E
[
Pr
(
z1 ∈ span{z2, . . . , zp} | z2 = α2, . . . , zp = αp

)]
=0

The last equality holds since Pr
(
z1 ∈ span{z2, . . . , zp} | z2 = α2, . . . , zp = αp

)
is the probability of the

event that z1 lies in a subspace with the dimension no higher than p− 1.

Theorem 3.8. If x1, . . . ,xN are independent observations from N (µ,Σ), then

1. x̄ and S are sufficient for µ and Σ;

2. if µ is given,
∑N
α=1(xα − µ)(xα − µ)> is sufficient for Σ;

3. if Σ is given, x̄ is sufficient for µ;

where

x̄ =
1

N

N∑
α=1

xα and S =
1

N − 1

N∑
α=1

(xα − x̄)(xα − x̄)>.

Proof. The density of x1, . . . ,xN is

N∏
α=1

n(xα | µ,Σ)

=(2π)−
pN
2 (det(Σ))

−N2 exp

(
−1

2
tr

(
N∑
α=1

(xα − µ)>Σ−1(xα − µ)

))

=(2π)−
pN
2 (det(Σ))

−N2 exp

(
−1

2
tr

(
Σ−1

N∑
α=1

(xα − µ)>(xα − µ)

))

=(2π)−
pN
2 (det(Σ))

−N2 exp

(
−1

2

(
N(x̄− µ)>Σ−1(x̄− µ) + (N − 1)tr

(
Σ−1S

)))
where the last step is due to

N∑
α=1

(xα − µ)>Σ−1(xα − µ)
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=

N∑
α=1

(x̄− µ)>Σ−1(x̄− µ) +

N∑
α=1

(x̄− µ)>Σ−1(xα − x̄)

+

N∑
α=1

(xα − x̄)>Σ−1(x̄− µ) +

N∑
α=1

(xα − x̄)>Σ−1(xα − x̄)

=N(x̄− µ)>Σ−1(x̄− µ) + (N − 1)tr
(
Σ−1S

)
.

Hence, the density is a function of t(x1, . . . ,xN ) = {x̄,S} and θ = {µ,Σ}. If µ is given, it is a function of

t(x1, . . . ,xN ) =
∑N
α=1(xα − µ)(xα − µ)> and θ = Σ. If Σ is given, it is a function of t(x1, . . . ,xN ) = x̄

(since S can be viewed a function of t for given)and θ = µ.

Theorem 3.9 (Theorem 3.4.2, Page 84). The sufficient set of statistics x̄, S is complete for µ,Σ when the
sample is drawn from N (µ,Σ).

Proof. We introduce z1, . . . , zN by following the proof of Theorem 3.5. For any function g(x̄, nS), we have

0 ≡ E[g(x̄, nS)]

=

∫
· · ·
∫

K
(

det(Σ)
)−N

2 g

(
x̄,

N−1∑
α=1

zαz>α

)
exp

(
−1

2

(
N−1∑
α=1

z>αΣ−1zα + N(x̄ − µ)>Σ−1(x̄ − µ)

))
dz1 . . .dzN−1 dx̄.

for any µ and Σ, where K =
√
N(2π)−

1
2pN . Let Σ−1 = I − 2Ω such that symmetric Ω and I − 2Ω � 0.

Let µ = (I− 2Ω)−1t = Σt. Then, we have

0

≡
∫
· · ·
∫
K
(

det(Σ)
)−N2 g(x̄,

N−1∑
α=1

zαz>α

)

exp

(
−1

2

(
N−1∑
α=1

z>αΣ−1zα +N x̄>Σ−1x̄− 2Nµ>Σ−1x̄ +Nµ>Σ−1µ

))
dz1 . . . dzN−1 dx̄

=

∫
· · ·
∫
K
(

det(Σ)
)−N2 g(x̄,

N−1∑
α=1

zαz>α

)

exp

(
−1

2

(
N−1∑
α=1

tr
(
Σ−1zαz>α

)
+Ntr

(
Σ−1x̄x̄>

)
− 2N t̄>x̄ +Nt>Σt

))
dz1 . . . dzN−1 dx̄

=

∫
· · ·
∫
K
(

det(I− 2Ω)
)N

2 g

(
x̄,

N−1∑
α=1

zαz>α

)

exp

(
−1

2

(
tr

(
(I− 2Ω)

(
N−1∑
α=1

zαz>α +N x̄x̄>

))
− 2N t̄>x̄ +Nt>(I− 2Ω)−1t

))
dz1 . . . dzN−1 dx̄

=
(

det(I− 2Ω)
)N

2 exp

(
−1

2
Nt>(I− 2Ω)−1t

)
∫
· · ·
∫
g
(
x̄,B−N x̄x̄>

)
exp

(
tr(ΩB) + t>(N x̄)

)
n

(
x̄ | 0, 1

N
I

)N−1∏
α=1

n(zα | 0, I) dz1 . . . dzN−1 dx̄

=
(

det(I− 2Ω)
)N

2 exp

(
−1

2
Nt>(I− 2Ω)−1t

)
∫
g
(
x̄,B−N x̄x̄>

)
exp

(
tr(ΩB) + t>(N x̄)

)
n

(
x̄ | 0, 1

N
I

)
dx̄

=
(

det(I− 2Ω)
)N

2 exp

(
−1

2
Nt>(I− 2Ω)−1t

)
E
[
g
(
x̄,B−N x̄x̄>

)
exp

(
tr(ΩB) + t>(N x̄)

)]
.

23



where B =
∑N−1
α=1 zαz>α +N x̄x̄>. Thus

0 ≡E
[
g
(
x̄,B−N x̄x̄>

)
exp

(
tr(ΩB) + t>(N x̄)

)]
=

∫∫
g
(
x̄,B−N x̄x̄>

)
exp

(
tr(ΩB) + t>(N x̄)

)
h(x̄,B) dx̄ dB

where h(x̄,B) is the joint density of x̄ and B. Consider that∫∫
g
(
x̄,B−N x̄x̄>

)
exp

(
tr(ΩB) + t>(N x̄)

)
h(x̄,B) dx̄ dB

is the Laplace transform of g
(
x̄,B−N x̄x̄>

)
h(x̄,B). Then we have g(x̄, nS)h(x̄,B) = 0 almost everywhere.

Hence, we have

0 =

∫∫
|g(x̄, nS)h(x̄,B)|dx̄ dB

=

∫∫
|g(x̄, nS)|h(x̄,B)|dx̄ dB

=

∫∫
|g(x̄, nS)|dm(x̄,B).

Hence, we have g(x̄, nS) = 0 almost everywhere.

Cramer-Rao Inequality We first give some lemmas. We denote the density of observation with parameter
θ by f(x,θ) and

s =
∂ ln g(X,θ)

∂θ
.

where g is the density on N samples and X = {x1, . . . ,xN}.

Lemma 3.3. We have E[s] = 0.

Proof. We have

E[sj ] =

∫
g(X,θ)

∂ ln g(X,θ)

∂θj
dX

=

∫
g(X,θ)

1

g(X,θ)

∂g(X,θ)

∂θj
dX

=

∫
∂g(X,θ)

∂θj
dX

=
∂

∂θj

∫
g(X,θ) dX

=
∂

∂θj
1 = 0.

Remark 3.2. Similarly, we also have

E
[
∂ ln f(x,θ)

∂θ

]
= 0.

Lemma 3.4. For unbiased estimator t of θ, we have C [t, s] = I.
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Proof. We have

C [tj , sk]

=

∫
(tj − θj)

∂ ln g(X,θ)

∂θk
g(X,θ) dX

=

∫
(tj − θj)

∂g(X,θ)

∂θk
dX

=−
∫
g(X,θ)

∂(tj − θj)
∂θk

dX =

{
1, j = k,

0, j 6= k,

where the last line holds since ∫
(tj − θj)g(X,θ) dX

=

∫
tjg(X,θ) dX− θj

∫
g(X,θ) dX

=Etj − θj
=0

and therefore

0 =
∂

∂θk

∫
(tj − θj)g(X,θ) dX

=

∫
∂(tj − θj)

∂θk
g(X,θ) dX +

∫
(tj − θj)

∂g(X,θ)

∂θk
.

Theorem 3.10. Under the regularity condition (everything is well-defined, integration and differentiation
can be swapped), we have

NE
[
(t− θ)(t− θ)>

]
�

(
E

[
∂ ln f(x,θ)

∂θ

(
∂ ln f(x,θ)

∂θ

)>])−1

,

where E[t] = θ and f(x,θ) is the density of the distribution with respect to the components of θ.

Proof. For any nonzero a,b ∈ Rp, consider the correlation of a>t and b>s, we have

1 ≥ C [a>t,b>s]√
Var[a>t]Var[b>s]

=
a>C [t, s]b√

a>C [t]a
√

b>C [s]b
=

a>b√
a>C [t]a

√
b>C [s]b

Let b = (C [s])−1a, we have

1 ≥ a>(C [s])−1a√
a>C [t]a

√
a>(C [s])−1a

which means

a>C [t]a ≥ a> (C [s])
−1

a

for any nonzero a. Hence, we have

E
[
(t− θ)(t− θ)>

]
= C [t] � (C [s])−1

=

(
C

[
∂ ln g(X,θ)

∂θ

])−1

=

(
NC

[
∂ ln f(x,θ)

∂θ

])−1

=
1

N

(
C

[
∂ ln f(x,θ)

∂θ

])−1

=
1

N

(
E

[
∂ ln f(x,θ)

∂θ

(
∂ ln f(x,θ)

∂θ

)>])−1

.
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Theorem 3.11. Let p-component vectors y1,y2, . . . be i.i.d with means E[yα] = ν and covariance matrices
E[(yα − ν)(yα − ν)>] = T. Then the limiting distribution of

1√
n

n∑
α=1

(yα − ν)

as n→ +∞ is N (0,T).

Proof. Let

φn(t, u) = E

[
exp

(
iut>

1√
n

n∑
α=1

(yα − ν)

)]
,

where u ∈ R and t ∈ Rp. For fixed t, the function φn(t, u) can be viewed as the characteristic function of

1√
n

n∑
α=1

(t>yα − t>E[yα]).

By the univariate central limit theorem, the limiting distribution is N (0, t>Tt). Therefore, we have

lim
n→∞

φn(t, u) = exp

(
−1

2
u2t>Tt

)
,

for any u ∈ R and t ∈ Rp. Let u = 1, we obtain

φn(t, 1) = E

[
exp

(
i t>

1√
n

n∑
α=1

(yα − ν)

)]
→ exp

(
−1

2
t>Tt

)
for any t ∈ Rp. Since exp

(
− 1

2t>Tt
)

is continuous at t = 0, the convergence is uniform in some neighborhood
of t = 0. The theorem follows.

Theorem 3.12. If x1, . . . ,xN are independently distributed, each xα according to N (µ,Σ), and if µ has an
a prior distribution N (ν,Φ), then the a posterior distribution of µ given x1, . . . ,xN is normal with mean

Φ

(
Φ +

1

N
Σ

)−1

x̄ +
1

N
Σ

(
Φ +

1

N
Σ

)−1

ν

and covariance matrix

Φ−Φ

(
Φ +

1

N
Σ

)−1

Φ.

Proof. Since x̄ is sufficient for µ, we need only consider x̄, which has the distribution of µ + y, where

y ∼ N
(

0,
1

N
Σ

)
and is independent of µ. Then we have

x̄ =
[
I I

] [µ
y

]
and

[
µ
y

]
∼ N

([
ν
0

]
,

[
Φ 0
0 1

NΣ

])
which implies x̄ ∼ N

(
ν,Φ + 1

NΣ
)
. Since we have[

µ
x̄

]
=

[
I 0
I I

] [
µ
y

]
,
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then [
µ
x̄

]
∼ N

([
ν
ν

]
,

[
Φ Φ
Φ Φ + 1

NΣ

])
.

Consider the conditional distribution of µ given x̄, we obtain the mean and covariance given x̄ is

ν + Φ

(
Φ +

1

N
Σ

)−1

(x̄− ν)

=Φ

(
Φ +

1

N
Σ

)−1

x̄ +

(
I−Φ

(
Φ +

1

N
Σ

)−1
)
ν

=Φ

(
Φ +

1

N
Σ

)−1

x̄ +
1

N
Σ

(
Φ +

1

N
Σ

)−1

ν.

Remark 3.3. Let

x =

[
x(1)

x(2)

]
∼ N

([
µ(1)

µ(2)

]
,

[
Σ11 Σ12

Σ21 Σ22

])
.

The conditional density of x(1) given that x(2) is

x(1) | x(2) ∼ N
(
µ(1) + Σ12Σ

−1
22 (x(2) − µ(2)),Σ11 −Σ12Σ

−1
22 Σ22

)
Lemma 3.5. If f(x) is a function such that

f(b)− f(a) =

∫ b

a

f ′(x) dx

for all a < b and if ∫ +∞

−∞
|f ′(x)| 1√

2π
exp

(
−1

2
(x− θ)2

)
dx < +∞,

then ∫ +∞

−∞
f(x)(x− θ) 1√

2π
exp

(
−1

2
(x− θ)2

)
dx =

∫ +∞

−∞
f ′(x)

1√
2π

exp

(
−1

2
(x− θ)2

)
dx. (5)

Proof. Since (x− θ) 1√
2π

exp
(
− 1

2 (x− θ)2
)

is odd function, the LHS of (5) can be written as∫ +∞

−∞
(f(x)− f(θ))(x− θ) 1√

2π
exp

(
−1

2
(x− θ)2

)
dx

=

∫ +∞

θ

(f(x)− f(θ))(x− θ) 1√
2π

exp

(
−1

2
(x− θ)2

)
dx

+

∫ θ

−∞
(f(x)− f(θ))(x− θ) 1√

2π
exp

(
−1

2
(x− θ)2

)
dx

=

∫ +∞

θ

∫ x

θ

f ′(y)(x− θ) 1√
2π

exp

(
−1

2
(x− θ)2

)
dy dx

−
∫ θ

−∞

∫ θ

x

f ′(y)(x− θ) 1√
2π

exp

(
−1

2
(x− θ)2

)
dy dx

=

∫ +∞

θ

∫ +∞

y

f ′(y)(x− θ) 1√
2π

exp

(
−1

2
(x− θ)2

)
dxdy

27



−
∫ θ

−∞

∫ y

−∞
f ′(y)(x− θ) 1√

2π
exp

(
−1

2
(x− θ)2

)
dxdy

=

∫ +∞

θ

f ′(y)
1√
2π

exp

(
−1

2
(y − θ)2

)
dy −

∫ θ

−∞
f ′(y)

1√
2π

exp

(
−1

2
(y − θ)2

)
dy

=

∫ +∞

−∞
f ′(x)

1√
2π

exp

(
−1

2
(x− θ)2

)
dx

where we use ∫
(x− θ) 1√

2π
exp

(
−1

2
(x− θ)2

)
dx

=
1√
2π

∫
exp

(
−1

2
(x− θ)2

)
d

(
1

2
(x− θ)2

)
=
−1√
2π

exp

(
−1

2
(x− θ)2

)
and

lim
x→+∞

−1√
2π

exp

(
−1

2
(x− θ)2

)
= lim
x→−∞

−1√
2π

exp

(
−1

2
(x− θ)2

)
= 0.

Lemma 3.6. Let x1, . . . ,xN are independently distributed to Np(µ, NI), we have

E
[
‖x̄− µ‖22

]
=

p∑
α=1

Var(x̄α) = p.

Proof. We have

E
[
‖x̄− µ‖22

]
=E

[
tr
(
(x̄− µ)>(x̄− µ)

)]
=E

[
tr
(
(x̄− µ)(x̄− µ)>

)]
=tr
(
E[(x̄− µ)(x̄− µ)>]

)
=tr
(
I
)

= p.

Theorem 3.13. Under the setting of Lemma 3.6, we let

m(x̄) =

(
1− p− 2

‖x̄− ν‖22

)
(x̄− ν) + ν

and p > 3. Then E
[
‖m(x̄)− µ‖22

]
< E

[
‖x̄− µ‖22

]
.

Proof. We have

∆R(µ) =E
[
‖x̄− µ‖22 − ‖m(x̄)− µ‖22

]
=E

‖x̄− µ‖22 −

∥∥∥∥∥
(

1− p− 2

‖x̄− ν‖22

)
(x̄− ν) + ν − µ

∥∥∥∥∥
2

2


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=E

 p∑
i=1

(x̄i − µi)2 −
p∑
i=1

((
1− p− 2

‖x̄− ν‖22

)
(x̄i − νi) + νi − µi

)2


=E

 p∑
i=1

(x̄i − µi)2 −
p∑
i=1

(
x̄i − µi −

p− 2

‖x̄− ν‖22
(x̄i − νi)

)2


=E

[
2(p− 2)

‖x̄− ν‖22

p∑
i=1

(x̄i − νi)(x̄i − µi)−
p∑
i=1

(p− 2)2(x̄i − νi)2

‖x̄− ν‖42

]

=E

[
2(p− 2)

p∑
i=1

x̄i − νi
‖x̄− ν‖22

· (x̄i − µi)−
(p− 2)2

‖x̄− ν‖22

]
.

Using Lemma 3.5 with θ = µi,

f(x̄i) =
x̄i − νi
‖x̄− ν‖22

and f ′(x̄i) =
1

‖x̄− ν‖22
− 2(x̄i − νi)2

‖x̄− ν‖42
.

Hence, we obtain

∆R(µ) =E

[
2(p− 2)

p∑
i=1

(
1

‖x̄− ν‖22
− 2(x̄i − νi)2

‖x̄− ν‖42

)
− (p− 2)2

‖x̄− ν‖22

]

=E

[
2(p− 2)

p∑
i=1

(
1

‖x̄− ν‖22
− 2(x̄i − νi)2

‖x̄− ν‖42

)
− (p− 2)2

‖x̄− ν‖22

]

=E

[
2p(p− 2)

‖x̄− ν‖22
− 4(p− 2)

‖x̄− ν‖22
− (p− 2)2

‖x̄− ν‖22

]

=E

[
(p− 2)2

‖x̄− ν‖22

]
> 0

Remark 3.4. We consider the bias and variance decomposition

E ‖m(x̄)− µ‖22
=E ‖m(x̄)− E[m(x̄)] + E[m(x̄)]− µ‖22
=E ‖m(x̄)− E[m(x̄)]‖22 + 2E[(m(x̄)− E[m(x̄)])>(E[m(x̄)]− µ)] + E ‖E[m(x̄)]− µ‖22
=E ‖m(x̄)− E[m(x̄)]‖22 + ‖E[m(x̄)]− µ‖22 .

Unbiased estimator may leads to larger variance.

Lemma 3.7. Suppose that x ∼ N (µ, I), then

E
∥∥g+

(
‖x‖2

)
x− µ

∥∥2

2
≤ E

∥∥g(‖x‖2)x− µ
∥∥2

2
,

where

g+(u) =

{
g(u), if g(u) ≥ 0

0, otherwise

for any function g(u).
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Proof. We have

E
∥∥g(‖x‖2)x− µ

∥∥2

2
− E

∥∥g+
(
‖x‖2

)
x− µ

∥∥2

2

=E
[(
g(‖x‖2)

)2‖x‖22]− E
[(
g+(‖x‖2)

)2‖x‖2]+ 2E
[
µ>x

(
g+
(
‖x‖2

)
− g
(
‖x‖2

))]
≥2E

[
µ>x

(
g+
(
‖x‖2

)
− g
(
‖x‖2

))]
.

Let P be the orthogonal matrix such that PP> = I and

P =

[
µ

‖µ‖2
, ×, . . . , ×

]
,

which means

P>µ = [‖µ‖2 , 0, . . . , 0]>.

Let y = P>x, then we have µ>x = µ>Py = (P>µ)>y = ‖µ‖2 y1 and

E
[
µ>x

(
g+
(
‖x‖2

)
− g
(
‖x‖2

))]
=E

[
‖µ‖2 y1

(
g+
(
‖y‖2

)
− g
(
‖y‖2

))]
= ‖µ‖2

∫ +∞

−∞
y1

(
g+
(
‖y‖2

)
− g
(
‖y‖2

)) 1

(2π)
p
2

exp

(
−1

2

(
p∑
i=1

y2
i − 2y1 ‖µ‖2 + ‖µ‖22

))
dy

=
‖µ‖2 exp

(
− 1

2 ‖µ‖
2
2

)
(2π)

p
2

∫ +∞

−∞
y1

(
g+
(
‖y‖2

)
− g
(
‖y‖2

))
exp

(
−1

2

p∑
i=1

y2
i

)
exp(y1 ‖µ‖2) dy

=
‖µ‖2 exp

(
− 1

2 ‖µ‖
2
2

)
(2π)

p
2

·
∫ +∞

−∞
. . .

∫ +∞

0

y1

(
g+
(
‖y‖2

)
− g
(
‖y‖2

))
exp

(
−1

2

p∑
i=1

y2
i

)
(exp(y1 ‖µ‖2)− exp(−y1 ‖µ‖2)) dy1 . . . dyp,

where the last step use exp(z)− exp(−z) ≥ 0 for all z ≥ 0.

Theorem 3.14. Let

m(x̄) =

(
1− p− 2

‖x̄− ν‖22

)
(x̄− ν) + ν and m̃(x̄) =

(
1− p− 2

‖x̄− ν‖22

)+

(x̄− ν) + ν,

where x̄ ∼ N (µ, I). Then we have E ‖m̃(x̄)− µ‖22 ≤ E ‖m(x̄)− µ‖22.

Proof. Use Lemma 3.7 with g(u) = 1− (p− 2)/u, x = x̄− ν and replace µ by µ− ν.

4 T 2-Statistic

Theorem 4.1. For y ∼ χ2(n), we have E[y] = n and Var[y] = 2n.

Proof. We can write

y =

n∑
i=1

x2
i ,

where x1, . . . , xn are independent standard normal variables. Then, we have

E[y] = E

[
n∑
i=1

x2
i

]
=

n∑
i=1

E
[
x2
i

]
=

n∑
i=1

Var [xi] = n
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and

Var[y] = Var

[
n∑
i=1

x2
i

]
=

n∑
i=1

Var
[
x2
i

]
=

n∑
i=1

E
[
x4
i −

(
E[x2

i ]
)2]

=

n∑
i=1

E [3− 1] = 2n.

We use the fact E[x4
i ] = 3 because of φ(t) = exp

(
− 1

2 t
2
)

and

E[x4
i ] =

1

i4
d4φ(t)

dt4

∣∣∣∣∣
t=0

= (t4 − 6t2 + 3) exp

(
−1

2
t2
) ∣∣∣∣∣

t=0

= 3.

Theorem 4.2. The density of y ∼ χ2(n) is

f(y; n) =


1

2
n
2 Γ
(
n
2

)y n2−1 exp
(
−y

2

)
, y > 0,

0, otherwise,

where

Γ(α) =

∫ ∞
0

tα−1 exp(−t) dt.

Proof. We first provide the following results:

1. We have Γ
(

1
2

)
=
√
π, because

Γ

(
1

2

)
=

∫ ∞
0

t−1/2 exp(−t) dt

=

∫ ∞
0

(
1

2
x2

)−1/2

exp

(
−1

2
x2

)
d

(
1

2
x2

)
=

∫ ∞
0

√
2

x
exp

(
−1

2
x2

)
xdx

=
√

2

∫ ∞
0

exp

(
−1

2
x2

)
dx

=2
√
π

∫ ∞
0

1√
2π

exp

(
−1

2
x2

)
dx

=
√
π.

2. For y1 = x2 with x ∼ N (0, 1), the density function of y1 is

1√
2πy1

exp

(
−1

2
y1

)
.

We define the positive random variable x̂ whose density function is

2√
2π

exp

(
−1

2
x̂2

)
.

Then the transform x̂ =
√
y1 is one to one and the density of y1 is

2√
2π

exp

(
−1

2
y1

)
d
√
y1

dy1
=

1√
2πy1

exp

(
−1

2
y1

)
.
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3. For beta function

B(α, β) =

∫ 1

0

tα−1(1− t)β−1 dt,

we have

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
.

Consider that

Γ(α)Γ(β)

=

∫ ∞
0

xα−1 exp(−x) dx

∫ ∞
0

yβ−1 exp(−y) dy

=

∫ ∞
0

∫ ∞
0

xα−1yβ−1 exp(−(x+ y)) dy dx.

Using the substitution x = uv and y = u(1− v), then the Jacobian matrix of the transformation is

J =

[
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]
=

[
v u

1− v −u

]
and det(J) = −u. Since u = x+ y and v = x/(x+ y), we have that the limits of integration for u are
0 to ∞ and the limits of integration for v are 0 to 1. Thus

Γ(α)Γ(β) =

∫ ∞
0

∫ ∞
0

xα−1yβ−1 exp(−(x+ y)) dy dx

=

∫ 1

0

∫ ∞
0

(uv)α−1(u(1− v))β−1 exp(−(uv + u(1− v)))| − u|dudv

=

∫ 1

0

∫ ∞
0

uα+β−1vα−1(1− v)β−1 exp(−u) dudv

=

∫ 1

0

vα−1(1− v)β−1 dv

∫ ∞
0

uα+β−1 exp(−u) du

=B(α, β)Γ(α+ β).

4. If

F (z) =

∫ b(z)

a(z)

f(y, z) dy,

then

F ′(z) =

∫ b(z)

a(z)

∂f(y, z)

∂z
dx+ f(b(z), z)b′(z)− f(a(z), z)a′(z).

We prove the density of Chi-square distribution by induction. For n = 1 and y > 0, we have

f(y; 1) =
1√
2πy

exp

(
−1

2
y

)
=

1

2
1
2 Γ
(

1
2

)y 1
2−1 exp

(
−y

2

)
.

Suppose the statement holds for n− 1, that is

f(y; n− 1) =


1

2
n−1
2 Γ

(
n−1

2

)y n−1
2 −1 exp

(
−y

2

)
, y > 0,

0, otherwise,
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We consider yn = yn−1 + x2
n such that yn−1 ∼ χ2(n− 1) and xn ∼ N (0, 1) are independent. Let F1 be the

corresponding cdf of f(y; 1). Then the cfd of yn is

Pr(yn ≤ z)

=

∫ z

0

∫ z−y

0

fn−1(y)f1(x) dxdy

=

∫ z

0

(F1(z − y)− F1(0))fn−1(y) dxdy

=

∫ z

0

F1(z − y)fn−1(y) dy

and the pdf of yn is (let y = tz)∫ z

0

1

2
1
2 Γ
(

1
2

) (z − y)
1
2−1 exp

(
−z − y

2

)
1

2
n−1
2 Γ

(
n−1

2

)y n−1
2 −1 exp

(
−y

2

)
dy

=
1

2
1
2 Γ
(

1
2

) 1

2
n−1
2 Γ

(
n−1

2

) ∫ z

0

(z − y)
1
2−1y

n−1
2 −1 exp

(
−z

2

)
dy

=
exp

(
− z2
)
z
n−1
2

2
n
2 Γ
(

1
2

)
Γ
(
n−1

2

) ∫ 1

0

(1− t) 1
2−1t

n−1
2 −1 dt

=
exp

(
− z2
)
z
n
2−1

2
n
2 Γ
(

1
2

)
Γ
(
n−1

2

)B(n− 1

2
,

1

2

)
=

1

2
n
2 Γ
(
n
2

)z n2−1 exp
(
−z

2

)
.

Theorem 4.3. If the n-component vector y is distributed according to N (ν,T) with T � 0, then

y>T−1y ∼ χ2
n

(
ν>T−1ν

)
.

If ν = 0, the distribution is the central χ2-distribution.

Proof. Let C be a non-singular matrix such that CTC> = I. Define z = Cy, then z is normally distributed
with mean

CE[y] = Cν , λ

and covariance matrix

E
[
(z− λ)(z− λ)>

]
= CE

[
(y − ν)(y − ν)>

]
C> = CTC> = I.

Then we have

y>T−1y = z>C−>T−1C−1z = z>
(
CTC>

)−1
z = z>z,

which is the sum of squares of the components of z. Similarly, we have ν>T−1ν = λ>λ. Thus, the random
variable y>T−1y is distributed as

∑n
i=1 z

2
i , where z1, . . . , zn are independently normally distributed with

means λ1, . . . , λn respectively, and variances 1. By definition this is the noncentral χ2-distribution with
noncentrality parameter

∑n
i=1 λ

2
i = ν>T−1ν.

Theorem 4.4. The probability density function (pdf) for the noncentral χ2-distribution is

f(v; p, τ2) =


exp

(
− 1

2 (τ2 + v)
)
v
p
2−1

2
p
2
√
π

∞∑
β=0

τ2βvβΓ
(
β + 1

2

)
(2β)! Γ

(
p
2 + β

) v > 0,

0, otherwise.
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Proof. χ2
p(τ

2) with τ2 =
∑p
i=1 λ

2
i can be constructed via y>y with y ∼ N (λ, I).

Let Q be p× p orthogonal matrix with elements of the first row being

qi1 =
λi√

(λ)>λ

for i = 1, . . . , p. Then z = Qy is distributed according to N (τ , I), where

τ =


τ
0
...
0

 ,
where τ =

√
λ>λ. Let v = y>y = z>z =

∑p
i=1 z

2
i . Then w =

∑p
i=2 z

2
i has a χ2-distribution with p − 1

degrees of freedom, and z1 and w have as joint density

1√
2π

exp

(
−1

2
(z1 − τ)2

)
1

2
p−1
2 Γ

(
p−1

2

)w p−1
2 −1 exp

(
−w

2

)
=C exp

(
−1

2

(
τ2 + z2

1 + w
))

w
p−3
2 exp (τz1)

=C exp

(
−1

2

(
τ2 + z2

1 + w
))

w
p−3
2

∞∑
α=0

ταzα1
α!

where C−1 = 2
p
2
√
πΓ
(
p−1

2

)
. The joint density of v = w + z2

1 and z1 is obtained by substituting w = v − z2
1

(the Jacobian being 1):

C exp

(
−1

2

(
τ2 + v

))
(v − z2

1)
p−3
2

∞∑
α=0

ταzα1
α!

.

The joint density of v and u = z1/
√
v is (dz1 =

√
vdu)

C exp

(
−1

2

(
τ2 + v

))
v
p−2
2 (1− u2)

p−3
2

∞∑
α=0

ταv
α
2 uα

α!
.

The admissible range of z given v is −
√
v to
√
v, and the admissible range of u is −1 to 1. When we integrate

above joint density with respect to u term by term, the terms for a odd integrate to 0, since such a term is

an odd function of u. In the other integrations we substitute u =
√
s (du =

√
s

2 ds) to obtain∫ 1

−1

(1− u2)
p−3
2 u2β du

=2

∫ 1

0

(1− u2)
p−3
2 u2β du

=

∫ 1

0

(1− s)
p−3
2 sβ−

1
2 ds

=B

(
p− 1

2
, β +

1

2

)
=

Γ(p−1
2 )Γ(β + 1

2 )

Γ(p2 + β)

by the usual properties of the beta and gamma functions. Thus the density of v is

1

2
p
2
√
π

exp

(
−1

2
(τ2 + v)

)
v
p
2−1

∞∑
β=0

τ2βvβΓ
(
β + 1

2

)
(2β)! Γ

(
p
2 + β

)
for v > 0.
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Theorem 4.5. Define the likelihood ratio criterion as

λ =

max
Σ∈S++

p

L(µ0,Σ)

max
µ∈Rp,Σ∈S++

p

L(µ,Σ)
,

where

L(µ,Σ) = (2π)−
pN
2 (det(Σ))

−N2 exp

(
−1

2

N∑
α=1

(xα − µ)>Σ−1(xα − µ)

)
.

then we have

λ
2
N =

1

1 + T 2/(N − 1)
,

where T 2 = N(x̄− µ0)>S−1(x̄− µ0).

Proof. The maximum likelihood estimators of µ and Σ are

µ̂Ω = x̄ and Σ̂Ω =
1

N

N∑
α=1

(xα − x̄)(xα − x̄)>.

If we restrict µ = µ0, the likelihood function is maximized at

Σ̂ω =
1

N

N∑
α=1

(xα − µ0)(xα − µ0)>.

Furthermore, we have

max
µ∈Rp,Σ∈S++

p

L(µ,Σ) = (2π)−
pN
2 (det(ΣΩ))

−N2 exp

(
−1

2
pN

)
because of

N∑
α=1

(xα − µ̄)>Σ̂−1
Ω (xα − µ̄)

=tr

(
Σ̂−1

Ω

N∑
α=1

(xα − µ̄)(xα − µ̄)>

)
=tr (nIp) = np.

Similarly, we also have

max
Σ∈S++

p

L(µ0,Σ) = (2π)−
pN
2 (det(Σω))

−N2 exp

(
−1

2
pN

)
.

Thus the likelihood ratio criterion is

λ =
(2π)−

pN
2 (det(ΣΩ))

−N2 exp
(
− 1

2pN
)

(2π)−
pN
2 (det(Σω))

−N2 exp
(
− 1

2pN
) =

(det(Σω))
N
2

(det(ΣΩ))
N
2

=

(
det
(∑N

α=1(xα − x̄)(xα − x̄)>
))N

2

(
det
(∑N

α=1(xα − µ0)(xα − µ0)>
))N

2

=
(det (A))

N
2

(det (A +N(x̄− µ0)(x̄− µ0)>))
N
2
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where A =
∑N
α=1(xα − x̄)(xα − x̄)> = (N − 1)S. Hence, we obtain

λ
2
N =

det (A)

det
(
A +

(√
N(x̄− µ0)

)(√
N(x̄− µ0)>

))
=

1

1 +N(x̄− µ0)>A−1(x̄− µ0)

=
1

1 + T 2/(N − 1)

where T 2 = N(x̄− µ0)>S−1(x̄− µ0) = (N − 1)N(x̄− µ0)>A−1(x̄− µ0) and we use the property of Schur
complement to obtain

det

([
A u
−u> 1

])
= det

(
A + uu>

)
= det

([
1 −u>

u A

])
= det(A)

(
1 + u>A−1u

)
with u =

√
N(x̄− µ0). Recall that The decomposition

M =

[
A B
C D

]
=

[
I BD−1

0 I

] [
A−BD−1C 0

0 D

] [
I 0

D−1C I

]
means we have det(M) = det(D) det(A−BD−1C).

Lemma 4.1. For any p× p non-singular matrices C and H and any vector k, we have

k>H−1k = (Ck)>(CHC>)−1(Ck).

Proof. We have (Ck)>(CHC>)−1(Ck) = k>C>(C>)−1(H)−1C−1(Ck) = k>H−1k.

Remark 4.1. This lemma means

T ∗2 =N(x̄∗ − 0)>(S∗)−1(x̄∗ − 0) = N(Cx̄− 0)>(CSC)−1(Cx̄∗ − 0) = N(x̄− 0)>S−1(x̄∗ − 0) = T 2.

Theorem 4.6. Suppose y1, . . . ,ym are independent with yα distributed according to N (Γwα,Φ), where wα

is an r-component vector. Let H =
∑m
α=1 wαw>α assumed non-singular, G =

∑m
α=1 yαw>αH−1 and

C =

m∑
α=1

(yα −Gwα)(yα −Gwα)> =

m∑
α=1

yαy>α −GHG>.

Then C is distributed as

m−r∑
α=1

uαu>α

where u1, . . . ,um−r are independently distributed according to N (0,Φ) independently of G.

Proof. Theorem 4.3.3 of “Theodore W. Anderson. An Introduction to Multivariate Statistical Analysis.
John Wiley & Sons Inc; 3rd Edition.”

Theorem 4.7. Let T 2 = y>S−1y, where y is distributed according to Np(ν,Σ) and nS is independently
distributed as

∑n
α=1 zαz>α with z1, . . . , zn independent, each with distribution Np(0,Σ). Then the random

variable

T 2

n
· n− p+ 1

p

is distributed as a noncentral F -distribution with p and n − p + 1 degrees of freedom and noncentrality
parameter ν>Σ−1ν. If ν = 0, the distribution is central F .
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Theorem 4.8. Let T 2 = y>S−1y, where y is distributed according to Np(ν,Σ) and nS is independently
distributed as

∑n
α=1 zαz>α with z1, . . . , zn independent, each with distribution Np(0,Σ). Then the random

variable

T 2

n
· n− p+ 1

p

is distributed as a noncentral F -distribution with p and n − p + 1 degrees of freedom and noncentrality
parameter ν>Σ−1ν. If ν = 0, the distribution is central F .

Proof. Let D be a non-singular matrix such that DΣD> = I, and define

y∗ = Dy, S∗ = DSD>, ν∗ = Dν.

Lemma 4.1 means

T 2 = (y∗)>(S∗)−1y∗,

where y∗ is distributed according to N (ν∗, I) and

nS∗ =

N−1∑
α=1

z∗α(z∗α)> =

N−1∑
α=1

Dzα(Dzα)>

with z∗α = Dzα independent, each with distribution N (0, I). We also have

ν>Σ−1ν = (Dν)>(DΣD>)−1(Dν∗) = (ν∗)>ν∗.

Let the first row of a p× p orthogonal matrix Q be defined by

qi1 =
y∗i√

(y∗)>y∗

for i = 1, . . . , p. Since Q depends on y∗, it is a random matrix. Now let

u = Qy∗ and B = Q(nS∗)Q>,

where n = N − 1. The definition of Q means

u1 =

p∑
i=1

q1iy
∗
i =

∑p
i=1(y∗i )2√
(y∗)>y∗

=
√

(y∗)>y∗

and

uj =

p∑
i=1

qjiy
∗
i =

√
(y∗)>y∗

p∑
i=1

qjiq1i = 0

for j = 2, . . . , p. Then

T 2

n
=

(y∗)>(S∗)−1y∗

n
= (Qu)>(Q>BQ)−1Q>u = u>Q>(Q>)−1B−1Q−1Q>u = u>B−1u

=
[
u1 0 . . . 0

]

b11 b12 . . . b1p

b21 b22 . . . b2p

...
...

. . .
...

bp1 bp2 . . . bpp



u1

0
...
0

 = u2
1b

11

where bij is the (i, j)-th entry of B−1. Using Schur Complement, we have

1

b11
= b11 − b>(1)B

−1
22 b(1) , b11.2,...,p (6)
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with

B =

[
b11 b>(1)

b(1) B22

]
and

T 2

n
=

u2
1

b11.2,...,p
=

(y∗)>y∗

b11.2,...,p
.

The conditional distribution of B given Q is that of

B =

n∑
α=1

Qz∗α(Qz∗α)> =

n∑
α=1

v∗α(v∗α)> =

[ ∑n
α=1(v∗α1)2

∑n
α=1 v∗α,1(v∗α,2−p)

>∑n
α=1 v∗α,1(v∗α,2−p)

∑n
α=1(v∗α,2−p)(v

∗
α,2−p)

>

]
=

[
b11 b>(1)

b(1) B22

]
,

where vα = Qz∗α are independent, each with distribution N (0, I) since QDΣD>Q> = I. We denote

G = b>(1)B
−1
22 =

m∑
α=1

v∗α,1(v∗α,2−p)
>B−1

22

By Theorem 4.6, the random variable

b11.2,...,p =b11 −
(
b>(1)B

−1
22

)
B22B

−1
22 b(1)

=

n∑
α=1

(v∗α1)2 −GB−1
22 G>

is conditionally distributed as

n−(p−1)∑
α=1

w2
α

where conditionally the w2
α are independent, each with the distribution N (0, 1); that is, b11.2,...,p is condi-

tionally distributed as χ2 with n− (p− 1) degrees of freedom. Since the conditional distribution of b11.2,...,p

does not depend on Q, it is unconditionally distributed as χ2. The quantity (y∗)>y∗ has a noncentral
χ2-distribution with p degrees of freedom and noncentrality parameter (ν∗)>ν∗ = ν>Σ−1ν> Then T is
distributed as the ratio of a noncentral χ2 and an independent χ2.

Remark 4.2. The equation (6) is based on the fact

M =

[
A B
C D

]
=

[
I BD−1

0 I

] [
A−BD−1C 0

0 D

] [
I 0

D−1C I

]
(7)

and

M−1 =

[
A B
C D

]−1

=

([
I BD−1

0 I

] [
A−BD−1C 0

0 D

] [
I 0

D−1C I

])−1

=

[
I 0

−D−1C I

][(
A−BD−1C

)−1
0

0 D−1

][
I −BD−1

0 I

]

=

[ (
A−BD−1C

)−1 −
(
A−BD−1C

)−1
BD−1

−D−1C
(
A−BD−1C

)−1
D−1 + D−1C

(
A−BD−1C

)−1
BD−1

]
.

Theorem 4.9. Let u be distributed according to the χ2-distribution with a degrees of freedom and w be
distributed according to the χ2-distribution with b degrees of freedom. The density of v = u/(u+w), when u
and w are independent is

1

B
(
a
2 ,

b
2

)v a2−1(1− v)
b
2−1, (8)

where B(α, β) =

∫ 1

0

tα−1(1− t)β−1 dt.
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Proof. Let

v =
u

u+ w
and z = u+ w.

Then u = vz, w = (1− v)z and

det(J(v, z)) = det

([
∂u
∂v

∂u
∂z

∂w
∂v

∂w
∂z

])
= det

([
z v
−z 1− v

])
= z.

Since v and w are independent, the joint density of u and w is

fu,v(u,w) =
1

2
a
2 Γ
(
a
2

)u a2−1 exp
(
−u

2

)
· 1

2
b
2 Γ
(
b
2

)w b
2−1 exp

(
−w

2

)
and the joint density of v and z is

fv,z(v, z) =fu,v(vz, (1− v)z) det(J(v, z))

=
1

2
a
2 Γ
(
a
2

) (vz)
a
2−1 exp

(
−vz

2

)
· 1

2
b
2 Γ
(
b
2

) ((1− v)z)
b
2−1 exp

(
− (1− v)z

2

)
· z

=
1

2
a+b
2 Γ

(
a
2

)
Γ
(
b
2

)v a2−1 · (1− v)
b
2−1z

a+b
2 −1 exp

(
−z

2

)
.

Consider that the density of χ2-distribution with a+ b degrees of freedom, we have∫ ∞
−∞

1

2
a+b
2 Γ

(
a+b

2

)z a+b2 −1 exp
(
−z

2

)
dz = 1.

Hence,

fz(z) =

∫ ∞
−∞

fv,z(v, z) dz

=
1

2
a+b
2 Γ

(
a
2

)
Γ
(
b
2

)v a2−1(1− v)
b
2−1

∫ ∞
−∞

z
a+b
2 −1 exp

(
−z

2

)
dz

=
2
a+b
2 Γ

(
a+b

2

)
2
a+b
2 Γ

(
a
2

)
Γ
(
b
2

)v a2−1(1− v)
b
2−1

=
1

B
(
a
2 + b

2

)v a2−1(1− v)
b
2−1.

Remark 4.3. Beta distribution is a conjugate prior the binomial random variable. The binomial random
variable X with parameters n and θ has the probability mass function

f(X = k |n, θ) = Cknθ
k(1− θ)n−k.

Let θ follows Beta distribution (prior distribution) with parameters a and b whose density function is

g(θ| a, b) =
1

B (a, b)
va−1(1− v)b−1.

Then we can write the density for the posterior distribution of θ by Bayes rule

P (θ |X = k) =
P (X = k | θ)P (θ)

P (X = k)
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=
Cknθ

k(1− θ)n−k · 1
B(a,b)θ

a−1(1− θ)b−1

P (X = k)

=
Ckn

P (X = k)B (a, b)
θk+a−1(1− θ)n−k+b−1.

Since Ckn/(P (X = k)B (a, b)) is independent on θ, it follows Beta distribution with parameters k + a and
n− k + b is density.

Theorem 4.10. Let x1, x2, . . . be a sequence of independently identically distributed random vectors with
mean vector µ and covariance matrix Σ. Let

x̂N =
1

N

N∑
α=1

xα, ŜN =
1

N − 1

N∑
α=1

(xα − x̄)(xα − x̄)>

and

T 2
N = N(x̄N − µ0)>S−1

N (x̄N − µ0).

Then the limiting distribution of T 2
N as N →∞ is the χ2-distribution with p degrees of freedom if µ = µ0.

Proof. By the central limit theorem, the limiting distribution of
√
N(x̄N − µ) is N (0,Σ). The sample

covariance matrix converges stochastically to Σ. Then the limiting distribution of T 2 is the distribution of

y>Σ−1y

where y has the distribution N (0,Σ). The theorem follows from Theorem 4.3.

Lemma 4.2. If v is a vector of p components and if B is a non-singular p× p matrix, then v>B−1v is the
nonzero root of

det(vv> − λB) = 0.

Proof. The non-zero root λ1 of det(vv> − λB) = 0 associate with vector β 6= 0 satisfying

(vv> − λ1B)β = 0 =⇒ vv>β = λ1Bβ =⇒
(
v>B−1v

)
v>β = λ1v

>β.

We can obtain that v>β 6= 0, otherwise (vv> − λ1B)β = 0 means Bβ = 0 which is impossible since B is
non-singular. Hence λ1 = v>B−1v.

Remark 4.4. Using this lemma with v =
√
N(x̄−µ0) and B = A, we can prove T 2/(N−1) is the non-zero

root of det
(
N(x̄− µ0)(x̄− µ0)> − λA

)
= 0.

Lemma 4.3. For any positive definite matrix S ∈ Rp×p and y,γ ∈ Rp, we have

(γ>y)2 ≤ (γ>Sγ)(y>S−1y).

Proof. For γ = 0, the result is trivial. Otherwise, let

b =
γ>y

γ>Sγ
.

Then we have

0 ≤(y − bSγ)>S−1(y − bSγ)

=y>S−1y − by>S−1Sγ − bγ>SS−1y − b2γ>SS−1Sγ

=y>S−1y − 2by>γ + b2γ>Sγ

=y>S−1y − (γ>y)2

γ>Sγ
,

which implies the desired result.
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Theorem 4.11. Let
{
x

(i)
α

}
for α = 1, . . . , Ni, i = 1, . . . , q be samples from N (µ(i),Σ), i = 1, . . . , q,

respectively and suppose

q∑
i=1

βiµ
(i) = µ.

where β1, . . . , βq are given scalars and µ is a given vector. Define the criterion

T 2 = c

(
q∑
i=1

βix̄
(i) − µ

)
S−1

(
q∑
i=1

βix̄
(i) − µ

)>
where

x̄(i) =
1

Ni

Ni∑
α=1

x(i)
α ,

1

c
=

q∑
i=1

β2
i

Ni

and (
q∑
i=1

Ni − q

)
S =

q∑
i=1

Ni∑
α=1

(
x(i)
α − x̄(i)

)(
x(i)
α − x̄(i)

)>
.

Then this T 2 has the T 2-distribution with
∑q
i=1Ni − q degrees of freedom.

Proof. Since x
(i)
α ∼ N (µ(i),Σ), we have

x̄(i) ∼ N
(
µ(i),

1

Ni
Σ

)
=⇒ βi

(
x̄(i) − µi

)
∼ N

(
0,
β2
i

Ni
Σ

)
.

and

q∑
i=1

βix̄
(i) − µ =

q∑
i=1

βi

(
x̄(i) − µ(i)

)
∼ N

(
0,

q∑
i=1

β2
i

Ni
Σ

)
=⇒
√
c

(
q∑
i=1

βix̄
(i) − µ

)
∼ N (0,Σ) .

On the other hand, we can write

q∑
i=1

Ni∑
α=1

(
x(i)
α − x̄(i)

)(
x(i)
α − x̄(i)

)>
=

q∑
i=1

Ni−1∑
α=1

z(i)
α (z(i)

α )>

where z
(i)
α are independent and z

(i)
α ∼ N (0,Σ). Hence,

T 2 =
√
c

(
q∑
i=1

βix̄
(i) − µ

)
S−1

(
√
c

(
q∑
i=1

βix̄
(i) − µ

))>
has the T 2-distribution with

∑q
i=1Ni − q degrees of freedom.

Lemma 4.4. Let x1, . . . ,xm be independent samples from N (µα,Σα) for i = 1, . . . ,m. Define

z1 =

N∑
α=1

aαxα and z2 =

N∑
α=1

bαxα,

then

Cov(z1, z2) =

N∑
α=1

aαbαΣα.
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Proof. The definitions mean

z1 =
[
a1I a2I . . . aNI

] 
x1

x2

. . .
xN

 and z2 =
[
b1I b2I . . . bNI

] 
x1

x2

. . .
xN

 ,
then

Cov(z1, z2) =
[
a1I a2I . . . aNI

]
Cov




x1

x2

. . .
xN

 ,


x1

x2

. . .
xN




b1I
b2I
...

bNI



=
[
a1I a2I . . . aNI

]


Σ1 0 · · · 0
0 Σ2 · · · 0
...

...
. . .

...
0 0 · · · ΣN



b1I
b2I
...

bNI


=

N∑
α=1

aαbαΣα.

Lemma 4.5. Let
{
x

(i)
α

}
for α = 1, . . . , Ni be independent samples from N (µ(i),Σi) for i = 1, 2, respectively.

We suppose N1 < N2 and define

yα = x(1)
α −

√
N1

N2
x(2)
α +

1√
N1N2

N1∑
β=1

x
(2)
β −

1

N2

N2∑
γ=1

x(2)
γ ,

for α = 1, . . . , N1. Then we have

ȳ =
1

N1

N1∑
α=1

yα = x̄(1)
α − x̄(2)

α

and

Cov(yα,yα′) =

{
Σ1 + N1

N2
Σ2, α = α′,

0, otherwise.

Proof. We have

ȳ =
1

N1

N1∑
α=1

yα

=
1

N1

N1∑
α=1

x(1)
α −

√
N1

N2
x(2)
α +

1√
N1N2

N1∑
β=1

x
(2)
β −

1

N2

N2∑
γ=1

x(2)
γ


=x̄(1) − x̄(2) − 1

N1

N1∑
α=1

√N1

N2
x(2)
α +

1√
N1N2

N1∑
β=1

x
(2)
β


=x̄(1) − x̄(2) − 1

N1

N1∑
α=1

√
N1

N2
x(2)
α +

1√
N1N2

N1∑
β=1

x
(2)
β

=x̄(1) − x̄(2).
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We first consider the case of α = α′. The independence means the covariance matrix of [x
(1)
α ; zα]> has

the form of [
Σ1 0
0 ×

]
,

where

zα = −
√
N1

N2
x(2)
α +

1√
N1N2

N1∑
β=1

x
(2)
β −

1

N2

N2∑
γ=1

x(2)
γ .

Hence, we only needs to focus on the covariance matrix of

zα =−
√
N1

N2
x(2)
α +

1√
N1N2

N1∑
β=1

x
(2)
β −

1

N1

N2∑
γ=1

x(2)
γ

=

α−1∑
γ=1

(
1√
N1N2

− 1

N2

)
x(2)
γ +

(
1√
N1N2

− 1

N2
−
√
N1

N2

)
x(2)
α

+

N1∑
γ=α+1

(
1√
N1N2

− 1

N2

)
x(2)
γ +

N2∑
γ=N1+1

(
− 1

N2

)
x(2)
γ

Lemma 4.4 means

Cov(zα, zα) =

(
(α− 1)

(
1√
N1N2

− 1

N2

)2

+

(
1√
N1N2

− 1

N2
−
√
N1

N2

)2

+ (N1 − α)

(
1√
N1N2

− 1

N2

)2

+ (N2 −N1)

N2∑
γ=N1+1

(
− 1

N2

)2
)

Σ2

=

(
(N1 − 1)

(
1√
N1N2

− 1

N2

)2

+

(
1√
N1N2

− 1

N2
−
√
N1

N2

)2

+
(N2 −N1)2

N2
2

)
Σ2

=
N1

N2
Σ2,

which means Cov(yα,yα) = Σ1 + (N1/N2)Σ2.
Then we consider the case of α 6= α′. We have

yα − E[yα]

=x(1)
α −

√
N1

N2
x(2)
α +

1√
N1N2

N1∑
β=1

x
(2)
β −

1

N2

N2∑
γ=1

x(2)
γ − (µ(1) − µ(2))

=x(1)
α − µ(1) −

√
N1

N2

(
x(2)
α − µ(2)

)
+

1√
N1N2

N1∑
β=1

(
x

(2)
β − µ(2)

)
− 1

N2

N2∑
γ=1

(
x(2)
γ − µ(2)

)

=x(1)
α − µ(1) −

√
N1

N2

(
x(2)
α − µ(2)

)
+

(
1√
N1N2

− 1

N2

) N1∑
β=1

(
x

(2)
β − µ(2)

)
− 1

N2

N2∑
γ=N1+1

(
x(2)
γ − µ(2)

)
and

yα′ − E[yα′ ]

=x
(1)
α′ − µ(1) −

√
N1

N2

(
x

(2)
α′ − µ(2)

)
+

(
1√
N1N2

− 1

N2

) N1∑
β=1

(
x

(2)
β − µ(2)

)
− 1

N2

N2∑
γ=N1+1

(
x(2)
γ − µ(2)

)
.
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The independence means

E
[
(yα − E[yα]) (yα′ − E[yα′ ])

>
]

=− 2

√
N1

N2

(
1√
N1N2

− 1

N2

)
Σ2 +

(
1√
N1N2

− 1

N2

)2

N1Σ2 +
N2 −N1

N2
2

Σ2

=

(
−2

(
1

N2
−
√
N1

N2

√
N2

)
+

(
1

N1N2
− 2

N2

√
N1N2

+
1

N2
2

)
N1 +

1

N2
− N1

N2
2

)
Σ2

=0.

5 Sample Correlation Coefficients

Lemma 5.1. If y1, . . . ,yN are independently distributed, if

yα =

y
(1)
α

y
(2)
α


has the density f(yα) and if the conditional density of y

(2)
α given y

(1)
α is f

(
y

(2)
α | y

(1)
α

)
for α = 1, . . . , n.

Then in the conditional distribution of y
(2)
1 , . . . ,y

(2)
N given y

(1)
1 , . . . ,y

(1)
N , the random vectors y

(2)
1 , . . . ,y

(2)
N

are independent and the density of y
(2)
α is f

(
y

(2)
α | y(1)

α

)
.

Proof. The marginal density of y
(1)
1 , . . . ,y

(1)
N is

N∏
α=1

f1

(
y(1)
α

)
where f1

(
y

(1)
α

)
is the marginal density of y

(1)
α , and the conditional density of y

(2)
1 , . . . ,y

(2)
N given y

(1)
1 , . . . ,y

(1)
N

is ∏N
α=1 f

(
yα
)∏N

α=1 f1

(
y

(1)
α

) =

N∏
α=1

f
(
y

(1)
α ,y

(2)
α

)
f1

(
y

(1)
α

) =

N∏
α=1

f
(
y(2)
α | y(1)

α

)
.

Theorem 5.1. If the pairs (z11, z21), . . . , (z1n, z2n) are independent and each pair are distributed according
to [

z1α

z2α

]
∼ N

([
0
0

]
,

[
σ2

1 σ1σ2ρ
σ1σ2ρ σ2

2

])
, where α = 1, . . . , n,

then given z11, z12, . . . , z1n, the conditional distributions of

b =

∑n
α=1 z2αz1α∑n
i=1 z

2
1α

and
u

σ2
=

n∑
α=1

(z2α − bz1α)2

σ2

are N
(
β, σ2/c2

)
and χ2-distribution with n−1 degrees of freedom, respectively; and b and u are independent,

where

β =
ρσ2

σ1
, σ2 = σ2

2(1− ρ2) and c2 =

n∑
i=1

z2
1α.
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Proof. The conditional distribution of z2α given z1α is N (βz1α, σ
2). Let vi = [zi1, . . . , zin]> for i = 1, 2.

Lemma 5.1 means the density of v2 given v1 is N (βv1, σ
2I) since z21, . . . , z2n are independent. We also have

v>1 (v2 − bv1) =v>1

(
v2 −

v>1 v2

v>1 v1
v1

)
= 0

and

u = (v2 − bv1)>(v2 − bv1) = v>2 v2 − 2bv>1 v2 + b2v>1 v1 = v>2 v2 − b2v>1 v1.

Apply Theorem 3.4 with xα = z2α and yα =
∑n
γ=1 cαγz2γ for α = 1, . . . , n, where the first row of orthogonal

matrix C is (1/c)v>1 . Then y1, . . . , yn are independently normally distributed with variance σ2 and means

E[y1] =

n∑
γ=1

c1γE[z2γ ] =

n∑
γ=1

c1γβz1γ = βc,

and

E[yα] =

n∑
γ=1

cαγE[z2γ ] =

n∑
γ=1

cαγβz1γ = 0.

Thus, we have

b =

∑n
α=1 z2αz1α∑n
i=1 z

2
1α

=

∑n
α=1 cz2αc1α

c2
=
y1

c
∼ N

(
β,

σ2

c2

)
.

and

u =

n∑
α=1

z2
2α − b2

n∑
α=1

z2
1α =

n∑
α=1

y2
α − y2

1 =

n∑
α=2

y2
α,

which is independent of b. Since we have yα ∼ N (0, σ2) for α = 2, . . . , n, the random variable u/σ2 has a
χ2-distribution with n− 1 degrees of freedom.

Theorem 5.2. If x and y are independently distributed, x having the distribution N (0, 1) and y having the
χ2-distribution with m degrees of freedom, then t = x/

√
y/m (has t-distribution with m degrees of freedom)

has the density

Γ(m+1
2 )

√
mπΓ(m2 )

(
1 +

t2

m

)−m+1
2

.

Proof. The joint density of x and y is

fx,y(x, y) =
1√
2π

exp

(
−x

2

2

)
· 1

2
m
2 Γ
(
m
2

)ym2 −1 exp
(
−y

2

)
.

The definition of t means x = t
√
y/m, then the joint density of t and y is

ft,y(t, y) =
1√
2π

exp

(
− t

2y

2m

)
· 1

2
m
2 Γ
(
m
2

)ym2 −1 exp
(
−y

2

)
·

dt
√
y/m

dt

=
1√
2π

exp

(
− t

2y

2m

)
· 1

2
m
2 Γ
(
m
2

)ym2 −1 exp
(
−y

2

)
·
( y
m

) 1
2

=
1

2
m+1

2
√
mπ Γ

(
m
2

) exp

(
−
(
t2

2m
+

1

2

)
y

)
· y

m−1
2 .

(9)
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The density of t can be obtained by integrating out y. Consider the expression of gamma function

Γ(α) =

∫ +∞

0

t̃α−1 exp(−t̃) dt̃

=

∫ +∞

0

(
t2

2m
+

1

2

)α−1

yα−1 exp

(
−
(
t2

2m
+

1

2

)
y

)(
t2

2m
+

1

2

)
dy

=

(
t2

2m
+

1

2

)α ∫ +∞

0

yα−1 exp

(
−
(
t2

2m
+

1

2

)
y

)
dy

(10)

where we use the substitution

t̃ =

(
t2

2m
+

1

2

)
y.

Connecting (9) and (10) with α = m+1
2 , we have

ft(t) =

∫ +∞

0

ft,y(t, y) dy

=
1

2
m
2
√
mπ Γ

(
m+1

2

) ∫ +∞

0

exp

(
−
(
t2

2m
+

1

2

)
y

)
· y

m−1
2 dy

=
1

2
m
2
√
mπ Γ

(
m+1

2

) ( t2

2m
+

1

2

)−m+1
2

Γ

(
m+ 1

2

)

=
Γ
(
m+1

2

)
√
mπ Γ

(
m
2

) ( t2
m

+ 1

)−m+1
2

.

Theorem 5.3. Let us consider the likelihood ratio test of the hypothesis that ρ = ρ0 based on a sample
x1, . . . ,xN from the bivariate normal distribution

N

([
µ1

µ2

]
,

[
σ2

1 σ1σ2ρ

σ1σ2ρ σ2
2

])
.

The set Ω consists of µ1, µ2, σ1, σ2 and ρ such that

σ1 > 0, σ2 > 0 and− 1 < ρ < 1

and the set ω is the subset for which ρ = ρ0. The likelihood ratio criterion is

supω L(x,θ)

supΩ L(x,θ)
=

(
(1− ρ2

0)(1− r2)

(1− ρ0r)2

)N
2

,

where

r =
a12√

a11
√
a22

, A =

[
a11 a12

a21 a22

]
=

N∑
α=1

(xα − x̄)(xα − x̄)> and x̄ =
1

N

N∑
α=1

xα.

Proof. We have shown in the section of T 2-statistic that the likelihood maximized in Ω is

max
µ∈Rp,Σ∈S++

p

L(µ,Σ) = (2π)−
pN
2 (det(ΣΩ))

−N2 exp

(
−1

2
pN

)
where

ΣΩ =
1

N
A with x̄ =

1

N

N∑
α=1

xα, A =

N∑
α=1

(xα − x̄)(xα − x̄)> =

[
a11 a12

a21 a22

]
and p = 2.
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Then we have

det(ΣΩ) =
a11a22 − a12a21

N2
,

which implies

max
µ∈Rp,Σ∈S++

p

L(µ,Σ) =
NN exp (−N)

(2π)N (a11a22 − a12a21)
N
2

=
NN exp (−N)

(2π)N (1− r2)
N
2 a

N
2

11a
N
2

22

.

Let σ2 = σ1σ2 and τ = σ1/σ2. Under the null hypothesis (ρ = ρ0), we have

det(Σ) = σ2
1σ

2
2 − σ2

1σ
2
1ρ

2
0 = σ4(1− ρ2

0), Σ−1 =
1

1− ρ2
0


1

σ2
1

− ρ0

σ1σ2

− ρ0

σ1σ2

1

σ2
2


and

N∑
α=1

(xα − x̄)>Σ−1(xα − x̄) = tr
(
Σ−1A

)
=

1

1− ρ2
0

(
a11

σ2
1

− 2ρ0a12

σ1σ2
+
a22

σ2
2

)
=

1

(1− ρ2
0)σ2

(a11

τ
− 2ρ0a12 + τa22

)
.

Then the likelihood function under the null hypothesis (ρ = ρ0) is

1

(2π)N (1− ρ2
0)

N
2 (σ2)N

exp

(
−a11/τ − 2ρ0a12 + τa22

2σ2(1− ρ2
0)

)
(11)

The maximum of (11) with respect to τ occurs at

τ̂ =
√
a11/a22,

then the concentrated likelihood is

1

(2π)N (1− ρ2
0)

N
2 (σ2)N

exp

(
−
√
a11
√
a22 (1− ρ0r)

σ2(1− ρ2
0)

)
. (12)

The maximum of (12) occurs at

σ̂2 =

√
a11
√
a22(1− ρ0r)

N(1− ρ2
0)

,

which is because of f(x) = exp(−b/x)/xN leads to

f ′(x) =
exp(− b

x ) · bx2 · xN − exp(− b
x ) ·NxN−1

x2N
=

exp(− b
x )xN−2(b−Nx)

x2N
.

The likelihood ratio criterion is, therefore,

supω L(x,θ)

supΩ L(x,θ)
=

(
(1− ρ2

0)(1− r2)

(1− ρ0r)2

)N
2

.
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Lemma 5.2. For random vector

x =

x1

...
xp

 ∼ N (µ,Σ),

where

µ =

µ1

...
µp

 and Σ =


σ11 σ12 . . . σ1p

σ21 σ22 . . . σ2p

...
...

. . .
...

σp1 σp2 . . . σpp

 .
Then E[(xi−µi)(xj−µj)(xk−µk)] = 0 and E[(xi−µi)(xj−µj)(xk−µk)(xl−µl)] = σijσkl+σikσjl+σilσjk.

Theorem 5.4. Let

A(n) =

N∑
α=1

(
xα − x̄N

)(
xα − x̄N

)>
,

where x1, . . . ,xN are independently distributed according to Np(µ,Σ) and n = N − 1. Then the limiting
distribution of

B(n) =
1√
n

(
A(n)− nΣ

)
is normal with mean 0 and covariance E

[
bij(n)bkl(n)

]
= σikσjl + σilσjk.

Proof. We have

A(n) =

n∑
α=1

zαz>α ,

where z1, . . . , zn are distributed according to N (0,Σ). We arrange the elements of zαz>α in a vector such as

yα =



z2
1α

z1αz2α

...
z2

2α
...
z2
pα


.

The second moments of yα can be deduced from the forth moments of zα by using Lemma 5.2, that is,

E[ziαzjα] = σij , E[ziαzjαzkαzlα] = σijσkl + σikσjl + σilσjk,

and

E[(ziαzjα − σij)(zkαzlα − σkl)] = σikσjl + σilσjk. (13)

Arranging the elements of Σ and A(n) as

ν =



σ11

σ12

...
σ22

...
σpp


and w(n) =



a11(n)
a12(n)

...
a22(n)

...
app(n)


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we obtain

1√
n

(
w(n)− nν

)
=

1√
n

n∑
α=1

(
yα − ν

)
.

Since E[yα] = µ and covariance of yα satisfies (13), the multivariate central limit theorem implies the desired
result.

Remark 5.1. In the analysis for the asymptotic distribution of sample correlation, we apply this theorem
with

A(n) = C(n) and Σ =

[
σ11 σ12

σ21 σ22

]
=

[
1 ρ
ρ 1

]
.

Then the covariance matrix of limiting distribution of the vector

√
n(u(n)− b) =

1√
n

cii(n)
cjj(n)
cij(n)

− nb


is σ11σ11 + σ11σ11 σ12σ12 + σ12σ12 σ11σ12 + σ12σ11

σ12σ12 + σ12σ12 σ22σ22 + σ22σ22 σ21σ22 + σ22σ21

σ11σ12 + σ12σ11 σ21σ22 + σ22σ21 σ11σ22 + σ12σ21

 =

 2 2ρ2 2ρ
2ρ2 2 2ρ
2ρ 2ρ 1 + ρ2

 .
Theorem 5.5. Let x1, . . . ,xN be a sample from Np(µ,Σ) and partition the variables as

x =

[
x(1)

x(2)

]
, µ =

[
µ(1)

µ(2)

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

Define B = Σ12Σ
−1
22 , Σ11.2 = Σ11 −Σ12Σ

−1
22 Σ21,

x̄ =

[
x̄(1)

x̄(2)

]
=

1

N

N∑
α=1

[
x

(1)
α

x
(2)
α

]
and A =

[
A11 A12

A21 A22

]
=

1

N

N∑
α=1

(xα − x̄)(xα − x̄)>.

Then the maximum likelihood estimators of µ(1), µ(2), B, Σ11.2 and Σ22 are

µ̂(1) = x̄(1), µ̂(2) = x̄(2), B̂ = A12A
−1
22 ,

Σ̂11.2 =
1

N
(A11 −A12A

−1
22 A21) and Σ̂22 =

1

N
A22.

Proof. The correspondence between Σ and (Σ11.2,B,Σ22) is one-by-one since

Σ12 = BΣ22 and Σ11 = Σ11.2 + BΣ22B
>,

which implies the desired result.

6 The Wishart Distribution

Theorem 6.1. Let z1, . . . , znbe independently distributed, each according to Np(0,Σ), where n ≥ p; let

A =

n∑
α=1

zαz>α = T∗T∗>,

where t∗ij = 0 for i < j, and t∗ii > 0 for i = 1, . . . , p. Then the density of T∗ is∏p
i=1 t

∗
ii
n−i exp

(
− 1

2 tr
(
Σ−1T∗T∗>

))
2
p(n−2)

2 π
p(p−1)

4 (det(Σ))
n
2
∏p
i=1 Γ

(
1
2 (n+ 1− i)

) .
49



Proof. Let C be the lower triangular matrix (cij = 0, i < j) such that Σ = CC> and cii > 0. Define
yα = C−1zα for α = 1, . . . , n, which are be independently distributed, each according to Np(0, I). We have

T∗T∗> =
∑n
α=1 Cyαy>αC> = CTT>C>. Let T = C−1T∗, then the matrix T is the lower triangular with

tii > 0 and we have

TT> = C−1T∗T∗>C−1 =

n∑
α=1

C−1zαz>αC−1 =

n∑
α=1

yαy>α .

The lemma in slides have shown that random variables ti1, . . . , tii−1 are independently distributed and tij is
distributed according to N (0, 1) for i > j; and tii has the χ2-distribution with n− i+ 1 degrees of freedom.
Hence, the density of w = t2ii is

1

2
1
2 (n+1−i)Γ

(
1
2 (n+ 1− i)

)w 1
2 (n+1−i)−1 exp

(
−w

2

)
and the density of tii =

√
w is (using dw/dtii = 2tii)

1

2
1
2 (n+1−i)Γ

(
1
2 (n+ 1− i)

) (t2ii)
1
2 (n+1−i)−1 exp

(
− t

2
ii

2

)
· (2tii) =

1

2
n−i−1

2 Γ
(

1
2 (n+ 1− i)

) tn−iii exp

(
− t

2
ii

2

)
Then the joint density of tij for j = 1, . . . , i, i = 1, . . . , p is

p∏
i=1

i−1∏
j=1

exp
(
− 1

2 t
2
ij

)
√

2π
·
p∏
i=1

tn−iii exp
(
− 1

2 t
2
ii

)
2
n−i−1

2 Γ
(

1
2 (n+ 1− i)

)
=

p∏
i=1

exp
(
− 1

2

∑i−1
j=1 t

2
ij

)
(2π)

i−1
2

·
p∏
i=1

tn−iii exp
(
− t

2
ii

2

)
2
n−i−1

2 Γ
(

1
2 (n+ 1− i)

)
=

p∏
i=1

exp
(
− 1

2

∑i
j=1 t

2
ij

)
tn−iii

2
n
2−1π

i−1
2 Γ

(
1
2 (n+ 1− i)

)
=

exp
(
− 1

2

∑p
i=1

∑i
j=1 t

2
ij

)∏p
i=1 t

n−i
ii

2
p(n−2)

2 π
p(p−1)

4

∏p
i=1 Γ

(
1
2 (n+ 1− i)

) .
The Jacobian of the transformation from T to T∗ = CT can be written as

t∗11

t∗21

t∗22
...
t∗p1
...
t∗pp


=



c11 0 0 · · · 0 · · · 0
× c22 0 · · · 0 · · · 0
× × c22 · · · 0 · · · 0
...

...
. . .

. . .
...

. . .
...

× × × · · · cpp · · · 0
...

...
...

. . .
...

. . .
...

× × × . . . × . . . cpp





t11

t21

t22

...
tp1
...
tpp


.

Since the matrix of the transformation is triangular, its determinant is the product of the diagonal elements,
namely,

∏p
i=1 c

i
ii. The Jacobian of the transformation from T to T∗ is the reciprocal of the determinant.

We also have tii = t∗ii/cii,
∏p
i=1 c

2
ii = det(C) det(C>) = det(Σ) and

p∑
i=1

i∑
j=1

t2ij = tr
(
TT>

)
= tr

(
C−1T∗T∗>C−>

)
=tr

(
T∗T∗>C−>C−1

)
= tr

(
T∗T∗>Σ−1

)
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Then the density of T∗ is

exp
(
− 1

2 tr
(
T∗T∗>Σ−1

))∏p
i=1(t∗ii/cii)

n−i

2
p(n−2)

2 π
p(p−1)

4

∏p
i=1 Γ

(
1
2 (n+ 1− i)

) ·

(
p∏
i=1

ciii

)−1

=
exp

(
− 1

2 tr
(
T∗T∗>Σ−1

))∏p
i=1 t

∗
ii
n−i

2
p(n−2)

2 π
p(p−1)

4

∏p
i=1 Γ

(
1
2 (n+ 1− i)

) ·( p∏
i=1

cii

)n

=
exp

(
− 1

2 tr
(
Σ−1T∗T∗>

))∏p
i=1 t

∗
ii
n−i

2
p(n−2)

2 π
p(p−1)

4 (det(Σ))
n
2

∏p
i=1 Γ

(
1
2 (n+ 1− i)

) .

Theorem 6.2. Let z1, . . . , zn be independently distributed, each according to N (0,Σ), where n ≥ p. Then
the density of A =

∑n
α=1 zαz>α is

(det(A))
n−p−1

2 exp
(
− 1

2 tr
(
Σ−1A

))
2
np
2 π

p(p−1)
4 (det(Σ))

n
2
∏p
i=1 Γ

(
1
2 (n+ 1− i)

)
for A positive definite, and 0 otherwise.

Proof. Following the proof of Theorem 6.1, we only needs to consider the transformation from T∗ to A. The
relation A = T∗T∗> means we can write

ahi =

i∑
j=1

t∗hjt
∗
ij for h ≥ i.

Then we have

∂ahi
∂t∗kl

= 0 for k > h; or k = h, l > i.

that is, ∂ahi/∂t
∗
kl = 0 if k, l, is beyond h, i in the lexicographic ordering. The Jacobian matrix of the

transformation from A to T∗ is a lower triangular matrix with diagonal elements

∂ahh
∂t∗hh

= 2t∗hh for h = 1, . . . , p;

∂ahi
∂t∗hi

= t∗ii for h > i;

The determinant of the Jacobian matrix is therefore

2p
p∏
i=1

t∗ii
p+1−i

The Jacobian of the transformation from T∗ to A is the reciprocal. Hence, the desnity of A is∏p
i=1 t

∗
ii
n−i exp

(
− 1

2 tr
(
Σ−1A

))
2
p(n−2)

2 π
p(p−1)

4 (det(Σ))
n
2
∏p
i=1 Γ

(
1
2 (n+ 1− i)

) ·(2p
p∏
i=1

t∗ii
p+1−i

)−1

=

∏p
i=1 t

∗
ii
n−p−1 exp

(
− 1

2 tr
(
Σ−1A

))
2
pn
2 π

p(p−1)
4 (det(Σ))

n
2
∏p
i=1 Γ

(
1
2 (n+ 1− i)

)
=

(det(A))
n−p−1

2 exp
(
− 1

2 tr
(
Σ−1A

))
2
pn
2 π

p(p−1)
4 (det(Σ))

n
2
∏p
i=1 Γ

(
1
2 (n+ 1− i)

) .
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Corollary 6.1. Let x1, . . . ,xN be independently distributed, each according to Np(µ,Σ), where N > p.

Then the distribution of S = 1
n

∑N
α=1(xα − x̄)(xα − x̄)> is W

(
1
nΣ, n

)
.

Proof. The matrix S has the distribution of

S =

n∑
α=1

zα√
n

(
zα√
n

)>
,

where each z1√
n
, . . . , zn√

n
are independently distributed, each according to N (0, 1

nΣ). Theorem 6.2 implies

this corollary.

Lemma 6.1. Given B positive semidefinite and A positive definite, there exists a non-singular matrix F
such that F>BF = D and F>AF = I, where D is diagonal.

Proof. Let the spectral decomposition of A be A = UAΣAU>A and E = UAΣ
− 1

2

A , then E>AE = I. Let the
spectral decomposition of B∗ = E>BE be B∗ = UB∗ΣB∗U

>
B∗ , then

ΣB∗ = U>B∗B
∗UB∗ = U>B∗E

>BEUB∗ .

Letting F = EUB∗ and D = ΣB∗ proves this lemma.

Lemma 6.2. The characteristic function of chi-square distribution with the degree of freedom n is

φ(t) = (1− 2it)−
n
2 .

Proof. Let x be distributed according to χ2-distribution with the degree of freedom n, then its density is

f(x) =
1

2
n
2 Γ
(
n
2

)xn2−1 exp
(
−x

2

)
.

We have (using the density of χ2-distribution with the degree of freedom 2k + n)

φ(t) =E [exp(itx)]

=

∫ +∞

0

exp(itx) · 1

2
n
2 Γ
(
n
2

)xn2−1 exp
(
−x

2

)
dx

=
1

2
n
2 Γ
(
n
2

) ∫ +∞

0

( ∞∑
k=0

(itx)k

k!

)
x
n
2−1 exp

(
−x

2

)
dx

=
1

2
n
2 Γ
(
n
2

) ∞∑
k=0

(it)k

k!

∫ +∞

0

xk+n
2−1 exp

(
−x

2

)
dx

=
1

2
n
2 Γ
(
n
2

) ∞∑
k=0

(it)k

k!
· 2k+n

2 Γ
(
k +

n

2

)∫ +∞

0

1

2k+n
2 Γ
(
k + n

2

)xk+n
2−1 exp

(
−x

2

)
dx

=
1

2
n
2 Γ
(
n
2

) ∞∑
k=0

(it)k

k!
· 2k+n

2 Γ
(
k +

n

2

)
=1 +

∞∑
k=1

(2it)k

k!
·
k−1∏
j=0

(
j +

n

2

)
=(1− 2it)−

n
2 .

For the last step, we consider Taylor expansion on f(x) = (1− x)−
n
2 at x = 0, that is

f(x) =

∞∑
k=0

f ′(0)xk

k!
=

∞∑
k=0

xk

k!

k−1∏
j=0

(
j +

n

2

)
.

We take x = 2it.
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Theorem 6.3. If z1, . . . , zn are independent, each with distribution Np(0,Σ), then the characteristic func-
tion of a11, . . . , app, 2a12, . . . , 2ap−1,p, where aij is the (i, j)-th element of

A =

n∑
α=1

zαz>α

is given by E [exp(i tr(AΘ))] = (det (I− 2iΘΣ))
−n2 , where Θ ∈ Rp×p is symmetric.

Proof. The characteristic function of a11, . . . , app, 2a12, . . . , 2ap−1,p is

E [exp(i tr(AΘ))]

=E

[
exp

(
i tr

(
n∑
α=1

zαz>αΘ

))]

=E

[
exp

(
i tr

(
n∑
α=1

z>αΘzα

))]

=E

[
exp

(
i

n∑
α=1

z>αΘzα

)]

=

n∏
α=1

E
[
exp

(
i z>αΘzα

)]
=
(
E
[
exp

(
i z>Θz

)])n
,

where z ∼ Np(0,Σ). Lemma 6.1 means there exists non-singular matrix F such that

F>Σ−1F = I and F>ΘF = D,

where D ∈ Rp×p is diagonal. If we set z = Fy, then

E
[
exp

(
i z>Θz

)]
=E

[
exp

(
i y>F>ΘFy

)]
=E

[
exp

(
i y>Dy

)]
=E

 p∏
j=1

exp
(
i djjy

2
j

)
=

p∏
j=1

E
[
exp

(
i djjy

2
j

)]
.

Note that the term of E
[
exp

(
i djjy

2
j

)]
is the characteristic function of the χ2-distribution with one degree

of freedom, namely (1− 2idjj)
− 1

2 . Thus, we have

E
[
exp

(
i z>Θz

)]
=

p∏
j=1

(1− 2idjj)
− 1

2 = (det(I− 2iD))−
1
2 .

We also have

det(I− 2iD)

= det
(
F>Σ−1F− 2iF>ΘF

)
= det

(
F>
(
Σ−1 − 2iΘ

)
F
)

=(det(F))2 det
(
Σ−1 − 2iΘ

)
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and F>Σ−1F = I means det(F) = (det(Σ))
1
2 . Combing the above results, we obtain

det(I− 2iD) = det(Σ) det
(
Σ−1 − 2iΘ

)
= det (I− 2iΘΣ)

and

E [exp(i tr(AΘ))] = (det (I− 2iΘΣ))
−n2 .

Theorem 6.4. Let A and Σ be partitioned into q and p− q rows and columns,

A =

[
A11 A12

A21 A22

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
If A is distributed according to W(Σ, n), then A11 is distributed according to W(Σ11, n).

Proof. The assumption means A is distributed as A =
∑n
α=1 zαz>α , where the zα are independent, each

with the distribution N (0,Σ). Partition zα into subvectors of q and p− q components such that

zα =

[
z

(1)
α

z
(2)
α

]
.

Then z
(1)
1 , . . . , z

(n)
α are independent, each with the distribution N (0,Σ11), and A11 is distributed as

n∑
α=1

z(1)
α

(
z(1)
α

)>
,

which has the distribution W(Σ11, n).

Theorem 6.5. Let A and Σ be partitioned into p1, . . . , pq rows and columns with p = p1, . . . , pq,

A =

A11 · · · A1q

...
. . .

...
Aq1 · · · Aqq

 , Σ =

Σ11 · · · Σ1q

...
. . .

...
Σq1 · · · Σqq


If Σ = 0 for i 6= j and if A ∼ W(Σ, n), then A11, . . . ,Aqq are independently distributed and Ajj ∼
W(Σjj , n) for j = 1, . . . , q.

Proof. The assumption means A is distributed as A =
∑n
α=1 zαz>α , where the zα are independent, each

with the distribution N (0,Σ). Partition zα into subvectors

zα =


z

(1)
α

...

z
(q)
α

 .
as A and Σ be portioned. Since Σij = 0, the sets z

(1)
1 , . . . , z

(1)
n , . . . , z

(q)
1 , . . . , z

(q)
n are independent. Then

A11 =
∑n
α=1 z

(1)
α

(
z

(1)
α

)>
, . . . ,Aqq =

∑n
α=1 z

(q)
α

(
z

(q)
α

)>
are independent. The rest of the proof follows from

Theorem 6.4.

Theorem 6.6. If x1, . . . ,xN are independent, each with distribution Np(µ,Σ), where

Σ =


σ11 0 · · · 0
0 σ22 · · · · · ·
...

...
. . .

...
0 0 · · · σpp


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then the density of the sample correlation coefficients is given by(
Γ
(
n
2

))p(
det
(
[rij ]ij

))n−p−1
2

Γp
(
n
2

) .

where n = N − 1.

Proof. The density of A is

(det(A))
n−p−1

2 exp
(
− 1

2

∑p
i=1

aii
σii

)
2
np
2

∏p
i=1 σ

n
2
ii Γp

(
n
2

) .

We consider the transformation

1. aij =
√
aii
√
ajj rij for i < j,

2. aii = aii otherwise,

which is from

{rij : i < j, i, j = 1, . . . , p} ∪ {aii : i = 1, . . . , p}

to

{aij : i < j, i, j = 1, . . . , p} ∪ {aii : i = 1, . . . , p}.

The determinant of Jacobian for this transformation is

p∏
i=1

i−1∏
j=1

√
aii
√
ajj =

p∏
i=1

a
p−1
2

ii .

The joint density of {rij : i < j, i, j = 1, . . . , p} ∪ {aii : i = 1, . . . , p} is(
det
(
[
√
aii
√
ajj rij ]ij

))n−p−1
2 exp

(
− 1

2

∑p
i=1

aii
σii

)
2
np
2

∏p
i=1 σ

n
2
ii Γp

(
n
2

) ·
p∏
i=1

a
p−1
2

ii

=

(∏p
i=1 aii

)n−p−1
2
(

det
(
[rij ]ij

))n−p−1
2 exp

(
− 1

2

∑p
i=1

aii
σii

)
2
np
2

∏p
i=1 σ

n
2
ii Γp

(
n
2

) ·
p∏
i=1

a
p−1
2

ii

=

(
det
(
[rij ]ij

))n−p−1
2

Γp
(
n
2

) ·
p∏
i=1

a
n
2−1
ii exp

(
− aii

2σii

)
2
n
2 σ

n
2
ii

,

where rii = 1. Let ui = aii/(2σii), then

∫ ∞
0

a
n
2−1
ii exp

(
− aii

2σii

)
2
n
2 σ

n
2
ii

daii =

∫ ∞
0

u
n
2−1
i exp (−ui) dui = Γ

(n
2

)
.

Combing all above results proves this theorem.

Theorem 6.7. If A has the distribution W(Σ, n) and Σ has the a prior distribution W−1(Ψ,m), then the
conditional distribution of Σ given A is the inverted Wishart distribution W−1(A + Ψ, n+m).
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Proof. The joint density of A and Σ,

f(A,Σ) =
(det(A))

n−p−1
2 exp

(
− 1

2 tr
(
Σ−1A

))
2
np
2 (det(Σ))

n
2 Γp

(
n
2

) ·
(det(Ψ))

m
2 (det(Σ))

−m+p+1
2 exp

(
− 1

2 tr
(
ΨΣ−1

))
2
mp
2 Γp

(
m
2

)
=

(det(Ψ))
m
2 (det(Σ))

−n+m+p+1
2 (det(A))

n−p−1
2 exp

(
− 1

2 tr
(
(A + Ψ)Σ−1

))
2

(m+n)p
2 Γp

(
n
2

)
Γp
(
m
2

)
(14)

for A and Σ are positive definite. The marginal density of A is the integral of (14) over the set of Σ positive
definite. Since

1 =

∫
w−1(Σ | A + Ψ, n+m) dΣ

=

∫
(det(A + Ψ))

n+m
2 (det(Σ))

−n+m+p+1
2 exp

(
− 1

2 tr
(
(A + Ψ)Σ−1

))
2

(m+n)p
2 Γp

(
n+m

2

) ,

we have

f(A) =

∫
f(A,Σ) dΣ

=
(det(Ψ))

m
2 (det(A))

n−p−1
2

Γp
(
n
2

)
Γp
(
m
2

) ∫
(det(Σ))

−n+m+p+1
2 exp

(
− 1

2 tr
(
(A + Ψ)Σ−1

))
2

(m+n)p
2

dΣ

=
(det(Ψ))

m
2 (det(A))

n−p−1
2

Γp
(
n
2

)
Γp
(
m
2

) · Γp
(
n+m

2

)
(det(A + Ψ))

−n+m
2 .

Then

f(Σ | A) =
f(Σ,A)

f(A)

=
(det(A + Ψ))

n+m
2 (det(Σ))

−n+m+p+1
2 exp

(
− 1

2 tr
(
(A + Ψ)Σ−1

))
2

(m+n)p
2 Γp

(
n+m

2

)
=w−1(Σ | A + Ψ, n+m).

7 Multivariate Linear Regression

Lemma 7.1. If A ∈ Rp×p and G ∈ Rp×p are positive definite, then tr
(
FAF>G

)
> 0 for non-zero F ∈ Rp×p.

Proof. Let A = HH> and G = KK>, then

tr
(
FAF>G

)
=tr
(
FHH>F>KK>

)
=tr
(
H>F>KK>FH

)
=tr
(
H>F>GFH

)
> 0.

Theorem 7.1. If xα is an observation from Nq(Bzα,Σ) for α = 1, . . . , N , where [z1, . . . , zN ] ∈ RN×q of
rank q is given, Σ ∈ Rq×q, B ∈ Rp×q and N ≥ p + q, the maximum likelihood estimator of B is given by
B̂ = CA−1 where

C =

N∑
α=1

xαz>α and A =

N∑
α=1

zαz>α .
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The maximum likelihood estimator of Σ is give by

Σ̂ =
1

N

N∑
α=1

(xα − B̂zα)(xα − B̂zα)>.

Proof. The likelihood function is

L =
1

(2π)
N
2 (det(Σ))

N
2

exp

(
−1

2

N∑
α=1

(xα −Bzα)>Σ−1(xα −Bzα)

)

Recall that in the maximum likelihood estimation for normal distribution, we use the fact

N∑
α=1

(xα − µ)>Σ−1(xα − µ) = tr

(
Σ−1

N∑
α=1

(xα − µ)(xα − µ)>

)

and

N∑
α=1

(xα − µ)(xα − µ)>

=

N∑
α=1

(
(xα − µ̄)(xα − µ̄)> + (xα − µ̄)(µ̄− µ)> + (µ̄− µ)(xα − µ̄)> + (µ̄− µ)(µ̄− µ)>

)
=

N∑
α=1

(
(xα − µ̄)(xα − µ̄)> + (µ̄− µ)(µ̄− µ)>

)
.

We shall do the similar thing for the exponential in L. We have

N∑
α=1

(xα −Bzα)>Σ−1(xα −Bzα) = tr

(
Σ−1

N∑
α=1

(xα −Bzα)(xα −Bzα)>

)
;

and for any H ∈ Rp×q, it holds that

N∑
α=1

(xα −Bzα)(xα −Bzα)>

=

N∑
α=1

(
(xα −Hzα)(xα −Hzα)> + (xα −Hzα)(Hzα −Bzα)> + (Hzα −Bzα)(xα −Hzα)>

+ (Hzα −Bzα)(Hzα −Bzα)>
)
.

We hope

N∑
α=1

(Hzα −Bzα)(xα −Hzα)> =

N∑
α=1

(xα −Hzα)(Hzα −Bzα)> = 0

Hence, we select H = Ĥ as follows

N∑
α=1

(xα − Ĥzα)(Ĥzα −Bzα)> = 0

⇐=

N∑
α=1

(xα − Ĥzα)z>α (Ĥ−B)> = 0
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⇐=

N∑
α=1

(xα − Ĥzα)z>α = 0

⇐=

N∑
α=1

xαz>α = Ĥ

N∑
α=1

zαz>α

⇐=Ĥ =

N∑
α=1

xαz>α

(
N∑
α=1

zαz>α

)−1

.

Then we have

N∑
α=1

(xα −Bzα)(xα −Bzα)> =

N∑
α=1

(
(xα − Ĥzα)(xα − Ĥzα)> + (Ĥzα −Bzα)(Ĥzα −Bzα)>

)
.

Lemma 7.1 means

tr

(
Σ−1

N∑
α=1

(xα −Bzα)(xα −Bzα)>

)

=tr

(
Σ−1

N∑
α=1

(
(xα − Ĥzα)(xα − Ĥzα)> + (Ĥzα −Bzα)(Ĥzα −Bzα)>

))

≥tr

(
Σ−1

N∑
α=1

(xα − Ĥzα)(xα − Ĥzα)>

)
,

where the equality holds by taking B = Ĥ. Hence, the maximum likelihood estimator of B is given by
B̂ = CA−1. Using Lemma 3.1 with G = Σ and

D =

N∑
α=1

(xα − B̂zα)(xα − B̂zα)>,

we obtain the the maximum likelihood estimator of Σ is Σ̂ = 1
ND.

Remark 7.1. Let

X =

x>1
...

x>N

 and Z =

z>1
...

z>N

 .
We consider the least square problem.

min
B∈Rp×q

f(B) ,
1

2

∥∥BZ> −X>
∥∥2

F
,

Then, taking the gradient of f be zero means

∇f(B) =
∂

∂B
tr

(
1

2
BZ>ZB> −BZ>X +

1

2
X>X

)
= BZZ> −X>Z = 0.

Hence, we have B = X>Z(ZZ>)−1 = CA−1 = B̂.

Remark 7.2. The proof means

N∑
α=1

(xα −Bzα)(xα −Bzα)>

58



=

N∑
α=1

(xα − B̂zα)(xα − B̂zα)> +

N∑
α=1

(B̂zα −Bzα)(B̂zα −Bzα)>

=NΣ̂ + (B̂−B)

(
N∑
α=1

zαz>α

)
(B̂−B)>

=NΣ̂ + (B̂−B)A(B̂−B)>.

Hence, the joint density of x1, . . . ,xN can be written as

1

(2π)
N
2 (det(Σ))

N
2

exp

(
−1

2

N∑
α=1

(xα −Bzα)>Σ−1(xα −Bzα)

)

=
1

(2π)
N
2 (det(Σ))

N
2

exp

(
−1

2
tr

(
Σ−1

N∑
α=1

(xα −Bzα)(xα −Bzα)>

))

=
1

(2π)
N
2 (det(Σ))

N
2

exp

(
−1

2
tr
(
Σ−1

(
NΣ̂ + (B̂−B)A(B̂−B)>

)))
,

which implies B̂ and Σ̂ form a sufficient set statistics for B and Σ.

Theorem 7.2. The maximum likelihood estimator B based on a set of N observations, the α-th from
N (Bzα,Σ), is normally distributed with mean B, and the covariance matrix of the i-th and j-th rows of B̂

is σijA
−1, where A =

∑N
α=1 zαz>α . The maximum likelihood estimator Σ̂ multiplied by N is independently

distributed according to W(Σ, N − q), where q is the number of components of zα.

Proof. For the estimator B̂, we have

E[B̂] = E

[
N∑
α=1

xαz>αA−1

]
=

N∑
α=1

Bzαz>αA−1 = B

(
N∑
α=1

zαz>α

)
A−1 = B

and

E
[
(β̂i − βi)(β̂j − βj)

>
]

=A−1E

[
N∑
α=1

(xiα − E[xiα]) zα

N∑
γ=1

(xjγ − E[xjγ ]) z>γ

]
A−1

=A−1
N∑
α=1

N∑
γ=1

E [(xiα − E[xiα]) (xjγ − E[xjγ ])] zαz>γ A−1

=A−1
N∑
α=1

N∑
γ=1

δαγσijzαz>γ A−1

=A−1
N∑
α=1

σijzαz>αA−1

=A−1
(
σijAA−1

)
=σijA

−1.

From Theorem 4.6, it follows that

NΣ̂ =

N∑
α=1

(xα − B̂zα)(xα − B̂zα)>

=

N∑
α=1

(
xαx>α − xαz>α B̂> − B̂zαx>α + B̂zαz>α B̂>

)
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=

N∑
α=1

xαx>α −
N∑
α=1

xαz>α B̂> −
N∑
α=1

B̂zαx>α +

N∑
α=1

B̂zαz>α B̂>

=

N∑
α=1

xαx>α − B̂AB̂> − B̂AB̂> + B̂AB̂>

=

N∑
α=1

xαx>α − B̂AB̂>.

is distributed according to W(Σ, N − q).

Theorem 7.3. The least squares estimator B̂ is the best linear unbiased estimator of B.

Proof. Let

β̃ig =

N∑
α=1

p∑
j=1

fjαxjα

be arbitrary unbiased estimator of βig, which satisfied

N∑
α=1

fjαzhα =

{
1, j = i, h = g,

0, otherwise.

Let ahg be the (h, g)-th element of A−1, then the least square estimator can be written as

β̂ig =

N∑
α=1

q∑
h=1

xiαzhαa
hg,

where A =
∑N
α=1 zαz>α . Then we have

E
[
(β̃ig − βig)2

]
=E
[
(β̂ig − βig + (β̃ig − β̂ig))2

]
=E
[
(β̂ig − βig)2

]
+ E

[
(β̂ig − βig)(β̃ig − β̂ig)

]
+ E

[
(β̃ig − β̂ig)2

]
Let uiα = xiα − E[xiα]. Since both β̃ig and β̂ig are unbiased estimator of βig, we have

β̃ig − βig =

N∑
α=1

p∑
j=1

fjαujα, β̂ig − βig =

N∑
α=1

q∑
h=1

uiαzhαa
hg,

and

β̃ig − β̂ig =

N∑
α=1

p∑
j=1

(
fjα − δij

q∑
h=1

zhαa
hg

)
ujα,

where δii = 1 and δij = 0 for i 6= j. Then we have

E
[
(β̂ig − βig)(β̃ig − β̂ig)

]
=E

 N∑
α=1

N∑
γ=1

q∑
h=1

zhαa
hguiα

p∑
j=1

(
fjγ − δij

q∑
h′=1

zh′γa
h′g

)
ujγ


=

N∑
α=1

q∑
h=1

p∑
j=1

zhαa
hg

(
fjα − δij

q∑
h′=1

zh′αa
h′g

)
σij
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=σiia
gg − σii

q∑
h=1

q∑
h′=1

ahh′a
hgah

′g

=σiia
gg − σiiagg = 0.

Thus

E
[
(β̃ig − βig)2

]
≥ E

[
(β̂ig − βig)2

]
+ E

[
(β̃ig − β̂ig)2

]
≥ E

[
(β̂ig − βig)2

]
.

Theorem 7.4. The likelihood ratio criterion

λ =

(
det
(
Σ̂Ω

))N
2(

det
(
Σ̂ω

))N
2

.

for testing the null hypothesis B1 = 0 is invariant with respect to transformations x∗α = Dxα for α = 1, . . . , N
and non-singular D.

Proof. The estimators in terms of x∗α are

B̂∗ =DC−1A = DB̂,

Σ̂∗Ω =
1

N

N∑
α=1

(Dxα −DB̂zα)(Dxα −DB̂zα)> = DΣ̂ΩD>,

B̂∗2ω =D
(
C2 −B∗1A12

)
A−1

22 = DB̂2ω,

Σ̂∗ω =
1

N

N∑
α=1

(
Dyα −DB̂2ωz(2)

α

)(
Dyα −DB̂2ωz(2)

α

)>
= DΣ̂ωD>,

then

λ∗ =

(
det
(
Σ̂∗Ω
))N

2(
det
(
Σ̂∗ω
))N

2

=

(
det
(
Σ̂Ω

))N
2(

det
(
Σ̂ω

))N
2

.

Theorem 7.5. The statistic

V1 =

∏q
g=1(det(Ag))

ng
2

(det(A))
n
2

.

is invariant with respect to linear transformation

x∗(g) = Cx(g) + ν(g).

Proof. We have

V ∗1 =

∏q
g=1(det(A∗g))

ng
2

(det(A∗))
n
2

=

∏q
g=1(det(CAgC

>))
ng
2

(det(CAC>))
n
2

=

∏q
g=1(det(Ag))

ng
2

(det(A))
n
2

= V1.

Theorem 7.6. Given a set of p-component observation vectors x1, . . . ,xN from N (µ,Σ), the likelihood
ratio criterion for testing the hypothesis

Σ = σ2
0Ψ0

where Ψ0 is specified and σ2 is not specified, is

(det(AΨ−1
0 ))

N
2

(tr(AΨ−1
0 )/p)

pN
2

.
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Proof. Let C be matrix such that

CΨ0C
> = I.

and x∗α = Cx, µ∗ = Cµ, Σ∗ = CΣC>. Then we have

tr(A∗) = tr

(
N∑
α=1

(
x∗α − x̄∗α

)(
x∗α − x̄∗α

)>)
= tr(CAC>) = tr(AC>C) = tr(AΨ−1

0 )

and

det(A∗) = det(CAC>) = det(C))2 det(A) = (det(Ψ0))−1 det(A) = det(AΨ−1
0 ).

Thus

(det(A∗)
N
2

(tr(A∗)/p)
pN
2

=
(det(AΨ−1

0 ))
N
2

(tr(AΨ−1
0 )/p)

pN
2

.

8 Principal Components

Theorem 8.1. Let Σ ∈ Rp×p be positive definite. A vector β with ‖β‖2 = 1 maximizing β>Σβ must satisfy

(Σ− λ1I)β = 0,

where λ1 is the largest root of

det(Σ− λI) = 0.

Proof. Let

φ(β, λ) = β>Σβ − λ(β>β − 1),

where λ is a Lagrange multiplier. A vector β maximizing β>Σβ must satisfy

0 =
∂φ(β, λ)

∂β
= 2Σβ − 2λβ,

that is (Σ− λI)β = 0. The constraint ‖β‖2 = 1 means Σ− λI is singular. Then λ must satisfy

det(Σ− λI) = 0.

We also have

β>Σβ = λβ>β = λ,

which implies our result.

Remark 8.1. For the second principle components β, we require

0 = E
[
β>xβ(1)>x

]
= E

[
β>xx>β(1)

]
= β>Σβ(1) = λβ>β(1).

Let

φ2(β, λ,ν) = β>Σβ − λ(β>β − 1)− 2νβ>Σβ(1).
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We require

0 =
∂φ2(β, λ)

∂β
= 2Σβ − 2λβ − 2νΣβ(1).

Multiplying on the left by β(1)>, we have

0 = 2β(1)>Σβ − 2λβ(1)>β − 2νβ(1)>Σβ(1) = −2νλ1.

Therefore ν = 0 and β must satisfy (Σ− λI)β = 0 and β>β(1) = 0, where

det(Σ− λI) = 0.

Hence, we should take λ by the second-largest root of det(Σ− λI) = 0.

Remark 8.2. For the (r + 1)-th step, we let

φr+1(β, λ,ν) = β>Σβ − λ(β>β − 1)− 2

r∑
i=1

νiβ
>Σβ(i)

and

0 =
∂φr+1(β, λ)

∂β
= 2Σβ − 2λβ − 2

r∑
i=1

νiΣβ(i).

Similarly, we have vj = 0 and (Σ− λjI)β(j) = 0 and λj is the root of det(Σ− λI) = 0

Remark 8.3. For the stationary point on surfaces x>Σ−1x = C, we let

ψ(x, λ) = x>x− λx>Σ−1x.

Then

0 =
∂ψ(x, λ)

∂x
= 2x− 2λΣ−1x,

that is Σx = λx. Thus the vectors β(1), . . . ,β(p) give the principal axis of the ellipsoid. The transformation
u = B>x is a rotation of the coordinate axes so that the new axes are in the direction of the principal axes
of the ellipsoid. In the new coordinates, the ellipsoid is

u>Λ−1u = C.

Theorem 8.2. An orthogonal transformation v = Cx of a random vector x with E[x] = 0 leaves invariant
the generalized variance and the sum of the variances of the components.

Proof. Let E[xx>] = Σ. The generalized variance of v is

det(CΣC>) = det(C) det(Σ) det(C>) = det(Σ).

The sum of the variances of the components of v is

p∑
i=1

E[v2
i ] = tr(CΣC>) = tr(ΣC>C) = tr(Σ) =

p∑
i=1

E[x2
i ].
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Theorem 8.3. Let x1, . . . ,xN be N observations from Np(0,Σ), where Σ has p different characteristic
roots and N > p. Then maximum likelihood estimators of λ1, . . . , λp and β(1), . . . ,β(p) consists of the roots
λ1 > · · · > λp of

det(Σ̂− λI) = 0

and corresponding vectors β̂(1), . . . , β̂(p) satisfying ‖β̂(i)‖2 = 1 and

(Σ̂− λiI)β̂(i) = 0

for i = 1, . . . , p, where Σ̂ is the the maximum likelihood estimate of Σ.

Proof. When the roots of det(Σ − λI) are different, each vector β(i) uniquely defined except that it can
be replaced by −β(i). If we require that the first nonzero component of −β(i) be positive, then −β(i) is
uniquely defined. Then the variables µ, Λ and B is a is a single-valued function of µ and Σ. Hence, the set
of maximum likelihood estimates of µ, Λ and B is the same function of µ̂ and Σ (restriction that the first
nonzero component of β(i) must be positive).

Remark 8.4. If Σ is non-singular, the probability is 1 that the roots of λ1, . . . , λp are different. Please see
Masashi Okamoto. “Distinctness of the eigenvalues of a quadratic form in a multivariate sample.” The
Annals of Statistics (1973): 763-765.

Theorem 8.4. Let nS ∼ W(Σ, n) and (λ1,β
(1)), (λp,β

(p)) be two distinct eigen-pairs of Σ with ‖β(1)‖2 =
‖β(p)‖2 = 1, then

nβ(1)>Sβ(1)

λ1
and

nβ(p)>Sβ(p)

λp
.

are independently distrusted as χ2-distribution with n degrees of freedom.

Proof. We have

nS =

n∑
α=1

zαz>α ,

where zα are independently distributed as N (0,Σ). Then we have β(1)>zα ∼ N (0, λ1), since β(1)>Σβ(1) =

λ1β
(1)>β(1) = λ1. Hence, it holds that

nβ(1)>Sβ(1)

λ1
=

n∑
α=1

β(1)>zαz>αβ
(1)

λ1
=

n∑
α=1

(
β(1)>zα√

λ1

)2

∼ χ2
n.

are distrusted as χ2-distribution with n degrees of freedom We also have the similar result for λp and β(p).

Consider that β(1)>zα and β(p)>zα are normal distributed with zero mean and

E
[
β(1)>zαβ

(p)>zα

]
= β(1)>E

[
zαz>α

]
β(p) = β(1)>Σβ(p) = λpβ

(1)>β(p) = 0.

Hence, we have proved the desired independence.

Remark 8.5. Let l and u be two numbers such that

1− ε = Pr
{
nl ≤ χ2

n

}
Pr
{
χ2
n ≤ nu

}
.

Then we have

1− ε = Pr

{
nl ≤ nβ(1)>Sβ(1)

λ1
,
nβ(p)>Sβ(p)

λp
≤ nu

}
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= Pr

{
λ1 ≤

β(1)>Sβ(1)

l
,
β(p)>Sβ(p)

u
≤ λp

}

≤Pr

{
λ1 ≤

max‖b‖2=1 b>Sb

l
,

min‖b‖2=1 b>Sb

u
≤ λp

}

= Pr

{
λ1 ≤

l1
l
,
lp
u
≤ λp

}
= Pr

{
lp
u
≤ λp ≤ λ1 ≤

l1
l

}
.

9 Canonical Correlations

We consider the problem

max
α>Σ11α=1
γ>Σ22γ =1

α>Σ12γ,

where

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
� 0.

Let

ψ(α,γ, λ, µ) = α>Σ12γ −
λ

2
(α>Σ11α− 1)− µ

2
(γ>Σ22γ − 1).

The vectors of derivatives set equal to zero are

∂ψ(α,γ, λ, µ)

∂α
= Σ12γ − λΣ11α = 0,

∂ψ(α,γ, λ, µ)

∂γ
= Σ>12α− µΣ22γ = 0.

Multiplication of above ones on the left by α> and γ> respectively, we have

α>Σ12γ − λα>Σ11α = 0,

γ>Σ>12α− µγ>Σ22γ = 0.

The constraint means λ = µ = α>Σ12γ. Setting derivatives be zero also can be written as[
−λΣ11 Σ12

Σ21 −λΣ22

] [
α
γ

]
= 0.

The positive definiteness of Σ means α 6= 0 and γ 6= 0, then

det

([
−λΣ11 Σ12

Σ21 −λΣ22

])
= 0.

Remark 9.1. Let

ξ =

[
α
γ

]
, A =

[
Σ11 0
0 Σ22

]
and B =

[
0 Σ12

Σ21 0

]
.

We have the form of generalized eigenvalue decomposition

Bξ = λAξ and det(B− λA) = 0.

If B = I, it is eigenvalue decomposition. For A � 0, we have

A−1Bξ = λξ and det(A−1B− λI) = 0,

which corresponds to eigenvalue decomposition on A−1B.
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Remark 9.2. At (r + 1)-th step, the uncorrelated conditions for u = α>x(1) and v = γ>x(2) are

0 = E[uui] = E
[
α>x(1)x(1)>α(i)

]
= α>Σ11α

(i),

0 = E[vvi] = E
[
γ>x(2)x(2)>γ(i)

]
= γ>Σ22γ

(i).

for i = 1, . . . , r. Then

E[uvi] = E
[
α>x(1)x(2)>γ(i)

]
= α>E

[
x(1)x(2)>]γ(i) = α>Σ12γ

(i) = λα>Σ11α
(i) = 0.

E[vui] = E
[
γ>x(2)x(1)>α(i)

]
= γ>E

[
x(2)x(1)>]α(i) = γ>Σ21α

(i) = λγ>Σ22γ
(i) = 0.

We now maximize E[ur+1vr+1]. Let

ψr+1(α,γ, λ, µ) = α>Σ12γ −
λ

2
(α>Σ11α− 1)− µ

2
(γ>Σ22γ − 1)−

r∑
i=1

νiα
>Σ11α

(i) −
r∑
i=1

θiγ
>Σ22γ

(i).

The vectors of derivatives set equal to zero are

∂ψr+1(α,γ, λ, µ,ν,θ)

∂α
= Σ12γ − λΣ11α−

r∑
i=1

νiΣ11α
(i) = 0,

∂ψr+1(α,γ, λ, µ,ν,θ)

∂γ
= Σ>12α− µΣ22γ −

r∑
i=1

θiΣ22γ
(i) = 0.

Multiplication of above ones on the left by α(j)> and γ(j)> for any j ≤ r respectively gives

0 = α(j)>Σ12γ − λα(j)>Σ11α−
r∑
i=1

νiα
(j)>Σ11α

(i) = −νjα(j)>Σ11α
(j),

0 = γ(j)>Σ>12α− µγ(j)>Σ22γ −
r∑
i=1

θiγ
(j)>Σ22γ

(i) = −θjγ(j)>Σ22γ
(j).

Hence, we have vj = θj = 0. Then the condition of derivatives is[
−λΣ11 Σ12

Σ21 −λΣ22

] [
α
γ

]
= 0.

where λ satisfies

det

([
−λΣ11 Σ12

Σ21 −λΣ22

])
= 0;

and α and γ satisfy

α>Σ11α = 1, γ>Σ22γ = 1, α>Σ12γ
(i) = 0, and γ>Σ21α

(i) = 0.

Theorem 9.1. The canonical correlations are invariant with respect to transformations{
x∗(1) = C1x

(1),

x∗(2) = C2x
(2),

where C1 and C2 are non-singular. Additionally, any function of Σ that is invariant (under any such
transformation) is a function of the canonical correlations.
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Proof. The canonical correlations of x∗(1) and x∗(2) are the roots of

0 = det

([
−λC1Σ11C1 C1Σ12C

>
2

C2Σ21C
>
1 −λC2Σ22C

>
2

])
= det

([
C1 0
0 C2

])
det

([
−λΣ11 Σ12

Σ21 −λΣ22

])
det

([
C>1 0
0 C>2

])
,

which are equivalent to the canonical correlations of x(1) and x(2).
If f(Σ11,Σ12,Σ22) be a vector function such that f(Σ11,Σ12,Σ22) = f(C1Σ11C

>
1 ,C1Σ12C

>
2 ,C2Σ22C

>
2 )

for any non-singular C1 and C2. Let C1 = A> and C2 = Γ>, then f(C1Σ11C
>
1 ,C1Σ12C

>
2 ,C2Σ22C

>
2 ) =

f(I,diag(Λ,0), I).
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