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Course Overview

Homepage: https://weizhonz.github.io/index.html

Prerequisite course: calculus, linear algebra, probability and statistics

Recommended reading (textbook):

Lecture 01 (Fudan University) MATH 620156 3 / 66
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Course Grading Policy

Homework, 40%

No midterm exam

Final exam, 60%
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Multivariate Statistics

Multivariate statistics is a subdivision of statistics encompassing the
simultaneous observation and analysis of more than one variable.

Multivariate statistics try to understand the relationships between variables
and their relevance to the problem being studied.

Statistics
Machine 

Learning
Multivariate 

Statistics
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Multivariate Statistics

The measurements made on a single individual can be assembled into a
column vector.

The set of observations on all individuals in a sample constitutes a sample
of vectors, and the vectors set side by side make up the matrix of
observations.

The data to be analyzed then are thought of as displayed in a matrix or in
several matrices.

We start from the review of linear algebra.
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Notations

We use xi to denote the entry of the n-dimensional vector x such that

x =


x1
x2
...
xn

 ∈ Rn.

We use aij to denote the entry of matrix A with dimension m× n such that

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 ∈ Rm×n.
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Notations

We can also present the matrix as

A =


A11 A12 · · · A1q

A21 A22 · · · A2q
...

...
. . .

...
Ap1 Ap2 · · · Apq

 ∈ Rm×n.

if the sub-matrices are compatible with the partition.

We define

0 =


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ∈ Rm×n, I =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 ∈ Rn×n.
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Matrix Operations: Transpose

The transpose of a matrix results from flipping the rows and columns.
Given a matrix A ∈ Rm×n such that

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 ∈ Rm×n,

then its transpose, written A⊤ ∈ Rn×m, is an n ×m matrix such that

A⊤ =


a11 a21 · · · am1

a12 a22 · · · am2
...

...
. . .

...
a1n a2n · · · amn

 ∈ Rn×m.
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Matrix Operations: Transpose

The following properties of transposes are easily verified

1
(
A⊤)⊤ = A

2 (c1A+ c2B)
⊤ = c1A⊤ + c2A⊤

We say a square matrix A ∈ Rn×n is symmetric if A = A⊤. It is common
to denote the set of all symmetric matrices of size n as Sn.

We say a square matrix A ∈ Rn×n is anti-symmetric if A = −A⊤.

Lecture 01 (Fudan University) MATH 620156 10 / 66



Matrix Operations: Transpose

Sometimes (not always), we also use A′ the present the transpose of A.

In MATLAB, the notation A′ present the conjugate transpose of A. To
avoid ambiguity, we use the superscript H to denote conjugate transpose.
Given A ∈ Cm×n, we define

AH =


ā11 ā21 · · · ām1

ā12 ā22 · · · ām2
...

...
. . .

...
ā1n ā2n · · · āmn

 ∈ Cn×m.

For example,

[
2 + 3i 1 2− i
5− 6i i 3− 2i

]H
=

2− 3i 5 + 6i
1 −i

2 + i 3 + 2i


Lecture 01 (Fudan University) MATH 620156 11 / 66



Matrix Operations: Addition/Subtraction

If A ∈ Rm×n and B ∈ Rm×n are two matrices of the same order, then

A+ B =


a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b1n

...
...

. . .
...

am1 + bm1 am2 + bm2 · · · amn + bmn

 ∈ Rm×n

and

A− B =


a11 − b11 a12 − b12 · · · a1n − b1n
a21 − b21 a22 − b22 · · · a2n − b1n

...
...

. . .
...

am1 − bm1 am2 − bm2 · · · amn − bmn

 ∈ Rm×n.
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Matrix Operations: Multiplication

The product of A ∈ Rm×n and B ∈ Rn×p is the matrix

C = AB ∈ Rm×p,

where

C =


c11 c12 · · · c1q
c21 c22 · · · c2q
...

...
. . .

...
cp1 cp2 · · · cpq

 ∈ Rm×p.

and cij =
∑n

k=1 aikbkj .
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Matrix Operations: Inner Product (Dot Product)

Given two vectors x ∈ Rn and y ∈ Rn, the quantity x⊤y ∈ R is called the
inner product (or dot product) of the vectors, is a real number given by

x⊤y =
[
x1 x2 · · · xn

]

y1
y2
...
yn

 =
n∑

i=1

xiyi .
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Matrix Operations: Outer Product

Given two vectors x ∈ Rm and y ∈ Rn, the matrix xy⊤ ∈ Rm×n is called
the outer product of the vectors, that is,

xy⊤ =


x1y1 x1y2 · · · x1yn
x2y1 x2y2 · · · x2yn
...

...
. . .

...
xmy1 xmy2 · · · xmyn

 =


x1y⊤

x2y⊤

...
xmy⊤

 ∈ Rm×n.

Example: Let x = [x1, x2, . . . , xm]
⊤ ∈ Rm and 1 = [1, 1, . . . , 1]⊤ ∈ Rn,

then

 | | |
x x · · · x
| | |

 =


x1
x2
...
xm

 [1 1 · · · 1
]
= x1⊤ ∈ Rm×n.
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Matrix Operations: Linear Combination

Given A ∈ Rm×n and x ∈ Rn, the product y = Ax ∈ Rm can be viewed as
the linear combination of the columns of A:

y = Ax =

 | | |
a1 a2 · · · an
| | |



x1
x2
...
xn

 =

 |
a1
|

 x1 +

 |
a2
|

 x2 · · ·+

 |
an
|

 xn.
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Matrix Operations: Multiplication

Properties of matrix multiplication

1 Matrix multiplication is associative: (AB)C = A(BC)

2 Matrix multiplication is distributive: A(B+ C) = AB+ AC

3 Matrix multiplication is NOT commutative in general.

4 (AB)⊤ = B⊤A⊤

Lecture 01 (Fudan University) MATH 620156 17 / 66



Matrix Operations: Trace

The trace of a square matrix A ∈ Rn×n, denoted tr(A), is the sum of
diagonal elements in the matrix:

tr(A) =
n∑

i=1

aii .

The trace has the following properties

1 For A ∈ Rn×n, we have tr(A) = tr
(
A⊤).

2 For A ∈ Rn×n, we have tr
(
A⊤A

)
=
∑n

i=1

∑n
j=1 a

2
ij .

3 For A ∈ Rn×n, B ∈ Rn×n, c1 ∈ R and c2 ∈ R, we have
tr(c1A+ c2B) = c1tr(A) + c2tr(B).

4 For A and B such that AB is square, tr(AB) = tr(BA).

5 For A, B and C such that ABC is square, we have
tr(ABC) = tr(BCA) = tr(CAB).
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Matrix Operations: Kronecker Product

The Kronecker product, denoted by ⊗, is an operation on two matrices of
arbitrary size resulting in a block matrix. It is a generalization of the outer
product from vectors to matrices.

If A is an m × n matrix and B is a p × q matrix, then the Kronecker
product A⊗ B is the mp × nq matrix as follows

A⊗ B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
. . .

...
am1B am2B · · · amnB

 ∈ Rmn×pq.
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Matrix Operations: Kronecker Product

The following properties of transposes are easily verified

1 A⊗ (B+ C) = A⊗ B+ A⊗ C

2 (A⊗ B)⊗ C = A⊗ (B⊗ C)

3 (A⊗ B)(C⊗D) = (AC)⊗ (BD)

4 tr(A⊗ B) = tr(A)tr(B)
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Inverse

The inverse of a square matrix A ∈ Rn×n is denoted by A−1 and is the
unique matrix such that

AA−1 = I = A−1A.

Note that not all matrices have inverses. Particular, we say that A is
invertible or non-singular if A−1 exists and non-invertible or singular
otherwise.
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Inverse

If all the necessary inverse exist, we have

1 (A−1)−1 = A

2 (cA)−1 = c−1A−1

3 (A−1)⊤ = (A⊤)−1

4 (AB)−1 = B−1A−1

5 A−1 = A⊤ if A⊤A = I

For A ∈ Rn×n, B ∈ Rn×p, C ∈ Rp×p and D ∈ Rp×n, we have

(A+ BCD)−1 = A−1 − A−1B(C−1 +DA−1B)−1DA−1.

if A and A+ BCD are non-singular.
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Vector Norms

A norm of a vector x ∈ Rn written by ∥x∥, is informally a measure of the
length of the vector. For example, we have the commonly-used Euclidean
norm (or ℓ2 norm),

∥x∥2 =
√
x⊤x =

√√√√ n∑
i=1

x2i .

Definition

A norm is any function Rn → R that satisfies four properties:

1 For all x ∈ Rn, we have ∥x∥ ≥ 0 (non-negativity).

2 ∥x∥ = 0 if and only if x = 0 (definiteness).

3 For all x ∈ Rn and t ∈ R, we have ∥tx∥ = |t| ∥x∥ (homogeneity).

4 For all x, y ∈ Rn, we have ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality).
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Vector Norms

There are some examples for x ∈ R:
1 The ℓ1 norm is ∥x∥1 =

∑n
i=1 |xi |

2 The ℓ2 norm is ∥x∥2 =
√∑n

i=1 x
2
i

3 The ℓ∞ norm is ∥x∥∞ = maxi |xi |
4 The ℓp norm is ∥x∥p = (

∑n
i=1 |xi |p)

1/p for p > 1.
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Vector Space

Definition

If W is a subset of Rm such that for all x, y ∈ W and a ∈ R have
a(x+ y) ∈ W, then W is called a vector subspace of Rm. Two simple
examples of subspace of Rm are {0} and Rm itself.

Definition

A set of vectors {x1, x2, . . . , xn} ⊆ Rm is said to be linearly independent if no
vector can be represented as a linear combination of the remaining vectors.
Conversely, if one vector belonging to the set can be represented as a linear
combination of the remaining vectors, then the vectors are said to be linear
dependent. That is, if

xn =
n−1∑
i=1

αixi

for some scalar values α1, . . . , αn−1, then we say x1, x2, . . . , xn are linearly

dependent; otherwise the vectors are linearly independent.
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Orthogonality

1 Two vectors x, y ∈ Rn are orthogonal if x⊤y = 0.

2 A vector x ∈ Rn is normalized if ∥x∥2 = 1.

3 A square matrix U ∈ Rn×n is orthogonal if all its columns are
orthogonal to each other and are normalized (the columns are then
referred to as being orthonormal). In other word, we have

U⊤U = I = UU⊤.

Note that if U is not square, i.e., U ∈ Rm×n, n < m, but its columns
are still orthonormal, then U⊤U = I, but UU⊤ ̸= I, we call that U is
column orthonormal.
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Orthogonality

A nice property of orthogonal matrices is that operating on a vector with
an orthogonal matrix will not change its Euclidean norm, that is

∥Ux∥2 = ∥x∥2

for any x ∈ Rn and orthogonal U ∈ Rn×n.

Orthogonal matrices can be used to represent a rotation.

A basis x1, . . . , xk of a subspace W of Rn is called orthonormal basis if all
the elements have norm one and are orthogonal to one another.

In particular, if A ∈ Rn is an orthogonal matrix then the columns of A
form an orthogonal basis of Rn.
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Rank

The column rank of a matrix A ∈ Rm×n is the size of the largest subset of
columns of A that constitute a linearly independent set.

In the same way, the row rank is the largest number of rows of A that
constitute a linearly independent set.

For any matrix A ∈ Rm×n, the column rank of A is equal to the row rank
of A.
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Rank

The following are some basic properties of the rank:

1 rank(A) ≤ min(m, n)

2 rank(A) = rank(A⊤)

3 rank(AB) ≤ min(rank(A), rank(B))

4 rank(A+ B) ≤ rank(A) + rank(B).

Definition

For A ∈ Rm×n, if rank(A) = min(m, n), then A is said to be full rank.
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Range and Nullspace

The span of a set of vectors {a1, . . . , an} is the set of all vectors that can
be expressed as a linear combination of {a1, . . . , an}. That is,

span{a1, . . . , an} =

{
v : v =

n∑
i=1

βiai , βi ∈ R

}

The range (also called the column space) of matrix A ∈ Rm×n denote
R(A). In other words,

R(A) = {v : v = Ax, x ∈ Rn} ⊆ Rm

The nullspace of a matrix A ∈ Rm×n, denoted N (A) is the set of all
vectors that equal 0 when multiplied by A. In other words,

N (A) = {x ∈ Rn : Ax = 0} ⊆ Rn
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Range and Nullspace

The subspace R(A⊤) is the orthogonal complement of N (A), that is,{
w : w = u+ v,u ∈ R(A⊤), v ∈ N (A)

}
and

R(A⊤)
⋂

N (A) = {0}.

The first one also can be written as R(A⊤)⊕N (A) = Rn, where ⊕ is the
direct sum of two linear spaces.
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QR Factorization

Given a full rank matrix A ∈ Rm×n, we can construct the column
orthogonal matrix Q ∈ Rm×n and upper triangular matrix R ∈ Rn×n such
that

A = QR,

which also can be written as

 | | |
a1 a2 · · · an
| | |

 =

 | | |
q1 q2 · · · qn
| | |



r11 r12 · · · r1n
0 r22 · · · r2n

0 0
. . .

...
0 0 · · · rnn


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QR Factorization

Each ai can be presented by a linear combination of {q1, · · · ,qn}

a1 =r11q1

a2 =r12q1 + r22q2
...

an =r1nq1 + r2nq2 + · · ·+ · · ·+ rnnqn
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QR Factorization

There is an old idea, known as Gram-Schmidt orthogonalization, which
constructs Q and R as follows

q1 =
a1
r11

q2 =
a2 − r12q1

r22
...

qn =
an −

∑n−1
i=1 rinqi
rnn

,

where rij = q⊤i aj for any i ̸= j and rjj =
∥∥∥aj −∑j−1

i=1 rijqi

∥∥∥
2
.

Then we have ∥qi∥2 = 1 for all i = 1, . . . , n and q⊤i qj = 0 for all i ̸= j .

What about A is not full rank?
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Matrix Norms

Given vector norm ∥·∥, the corresponding induced matrix norm of
A ∈ Rm×n is defined as

∥A∥ = sup
x∈Rn,x̸=0

∥Ax∥
∥x∥

= sup
x∈Rn,∥x∥=1

∥Ax∥ .

For example, we define

∥A∥1 = sup
x∈Rn,∥x∥1=1

∥Ax∥1

and

∥A∥∞ = sup
x∈Rn,∥x∥∞=1

∥Ax∥∞ .
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Matrix Norms

We denote A ∈ Rm×n as

A =

 | | |
a1 a2 · · · an
| | |

 =


a⊤(1)

a⊤(2)
...

a⊤(m)

 ,

then we have

∥A∥1 = max
1≤j≤n

∥aj∥1 and ∥A∥∞ = max
1≤i≤m

∥∥a(i)∥∥1
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Matrix Norms

Definition

General matrix norm is any function Rm×n → R that satisfies

1 For all A ∈ Rm×n, we have ∥A∥ ≥ 0 (non-negativity).

2 ∥A∥ = 0 if and only if A = 0 (definiteness).

3 For all A ∈ Rm×n and t ∈ R, we have ∥tA∥ = |t| ∥A∥ (homogeneity).

4 For all A,B ∈ Rm×n, we have ∥A+ B∥ ≤ ∥A∥+ ∥B∥
(triangle inequality).
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Matrix Norms

The most important matrix norm which is not induced by a vector norm
(why not?) is Frobenius norm (F -norm), which is defined as

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

a2ij =
√
tr(A⊤A)

for all A ∈ Rm×n. If Q ∈ Rm×m is orthogonal matrix, we have

∥QA∥F = ∥A∥F .

Homework

For A ∈ Rm×n and B ∈ Rn×p, prove that

∥AB∥F ≤ ∥A∥F ∥B∥F .
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Determinant

The determinant of a square matrix A ∈ Rn×n, is denoted by det(A) or
|A|, which is defined as

det(A) =
∑

τ=(τ1,...,τn)

(
sgn(τ)

n∏
i=1

ai ,τi

)

where τ = (τ1, . . . , τn) is permutation of (1, 2, . . . , n). The signature
sgn(τ) is defined to be +1 whenever the reordering given by τ can be
achieved by successively interchanging two entries an even number of
times, and −1 whenever it can be achieved by an odd number of such
interchanges.
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Determinant

We can also define determinant recursively

det(A) =
n∑

i=1

(−1)i+jaij det(A\i ,\j) for any j ∈ {1, . . . , n}

=
n∑

j=1

(−1)i+jaij det(A\i ,\j) for any i ∈ {1, . . . , n}

with the initial condition det(A) = a11 for A1×1, where A\i ,\j is the
(n− 1)× (n− 1) matrix obtained by deleting the i-th row and j-th column
from A.

The adjugate of A is denoted by adj(A) ∈ Rn×n whose entry at i-th row
and j-th column is (−1)i+j det(A\j ,\i ). The definition directly implies

Aadj(A) = adj(A)A = det(A)I.
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Determinant

Given square matrix A ∈ Rn×n as

A =


a⊤(1)

a⊤(2)
...

a⊤(m)

 ,

the determinant of A is the “volume” of the set

S =

{
v ∈ Rn : v =

n∑
i=1

βia(i),where 0 ≤ βj ≤ 1, i = 1, . . . , n

}
.

The set S formed by taking all possible linear combinations of the row
vectors, where the coefficients of the linear combination are all between 0
and 1.
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Determinant

1 det(I) = 1

2 If we multiply a single row in A by a scalar t ∈ Rn, then the
determinant of the new matrix is t det(A).

3 If we exchange any two rows of the square matrix A, then the
determinant of the new matrix is − det(A).

4 For A ∈ Rn×n, we have det(A) = 0 if and only if A is singular.
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Determinant

1 For A ∈ Rn×n is triangular, then det(A) =
∏n

i=1 aii .

2 For A ∈ Rn×n, B ∈ Rp×p and C ∈ Rn×p, we have

det

([
A C
0 B

])
= det(A) det(B)

3 For A ∈ Rn×n, we have det(A) = det(A⊤).

4 For A,B ∈ Rn×n, we have det(AB) = det(A) det(B).

5 For A ∈ Rn×n is orthogonal, we have det(A) = 1.
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Eigenvalues and Eigenvectors

Given a square matrix A ∈ Rn×n, we say that λ ∈ C is an eigenvalue of A
and x ∈ Cn is the corresponding eigenvector is the corresponding if

Ax = λx and x ̸= 0.

We define the standardized eigenvector which are normalized to have
length 1. Sometimes we also use the word “eigenvector” to refer the
standardized eigenvector.

We can define characteristic polynomial as

pA(λ) = det(A− λI) =
n∏

i=1

(λi − λ).

We can find the n roots (possibly complex) of pA to obtain the eigenvalues
λ1, . . . , λn.
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Eigenvalues and Eigenvectors

Homework

Suppose A ∈ Rn×n has eigenvalues λ1, . . . , λn. Prove the following
statements

1 tr(A) =
∑n

i=1 λi ,

2 det(A) =
∏n

i=1 λi .
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Spectral Decomposition Theorem

Any symmetric matrix A ∈ Rn×n can be written as

A = XΛX⊤ =
n∑

i=1

λixix
⊤
i

where Λ is the diagonal matrix elements of its main diagonal are
λ1, . . . , λn and X is an orthogonal matrix whose columns are
corresponding to standardized eigenvectors of A.

Proof Sketch

1 The eigenvalues of A are real.

2 Two eigenvectors corresponding to distinct eigenvalues of A are
orthogonal.

3 If λi is an eigenvalue of A with m ≥ 2 algebra multiplicity, we can
find m orthogonal eigenvectors in its eigenspace.
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Singular Value Decomposition

The singular value decomposition (SVD) of A ∈ Rm×n matrix is

A = UΣV⊤,

where U ∈ Rm×m is orthogonal, Σ ∈ Rm×n is rectangular diagonal matrix
with non-negative real numbers on the diagonal and V ∈ Rn×n is
orthogonal.

The diagonal entries of Σ are uniquely determined by A and are known as
the singular values of A. The number of non-zero singular values is equal
to the rank of A. The columns of U and the columns of V are called
left-singular vectors and right-singular vectors of A, respectively.
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Singular Value Decomposition

We can also write SVD as

A =
n∑

i=1

σiuiv
⊤
i

where r ≤ min{m, n} is the rank of A and σi is the diagonal entries of Σ.

Homework

The SVD always exists for any A ∈ Rm×n.
(Hint: Using spectral decomposition theorem)
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Singular Value Decomposition

The SVD is not unique. It is always possible to choose the decomposition
so that the singular values σi are in descending order. In this case, Σ (but
not always U and V) is uniquely determined by A.

The term sometimes refers to the compact SVD, a similar decomposition

A = UrΣrV
⊤
r

in which Σr is square diagonal of size r × r , where r ≤ min{m, n} is the
rank of A, and has only the non-zero singular values. In this variant, Ur is
an m × r column orthogonal matrix and Vr is an n × r column orthogonal
matrix such that U⊤

r Ur = V⊤
r Vr = I.
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Singular Value Decomposition

Based on SVD, we have

1 R(A) = span{u1, . . . ,ur}
2 N (A) = span{vr+1, . . . , vn}
3 R(A⊤) = span{v1, . . . , vr}
4 N (A⊤) = span{ur+1, . . . ,um}

Let σ1 ≤ · · · ≤ σr be the non-zero singular values of A. We have

∥A∥2 = σ1 and ∥A∥F =
√
σ2
1 + · · ·+ σ2

r .
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Quadratic Forms

Given a square matrix A ∈ Rn×n and a vector x ∈ Rn, the scalar x⊤Ax is
called a quadratic form and we have

x⊤Ax =
n∑

i=1

n∑
j=1

aijxixj .

We often implicitly assume that the matrices appearing in a quadratic
form are symmetric.
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Definiteness

1 A symmetric matrix A ∈ Rn×n is positive definite (PD) if for all
non-zero vectors x ∈ Rn holds that x⊤Ax > 0. This is usually
denoted by A ≻ 0.

2 A symmetric matrix A ∈ Rn×n is positive semi-definite (PSD) if for
all vectors x ∈ Rn holds that x⊤Ax ≥ 0. This is usually denoted by
A ⪰ 0.

3 A symmetric matrix A ∈ Rn×n is negative definite (ND) if for all
non-zero vectors x ∈ Rn holds that x⊤Ax < 0. This is usually
denoted by A ≺ 0.

4 A symmetric matrix A ∈ Rn×n is negative semi-definite (NSD) if for
all vectors x ∈ Rn holds that x⊤Ax ≤ 0. This is usually denoted by
A ⪯ 0.

5 A symmetric matrix A ∈ Rn×n is indefinite if it is neither positive
semi-definite nor negative semi-definite i.e., if there exists x1, x2 ∈ Rn

such that x⊤1 Ax1 > 0 and x⊤2 Ax2 < 0.
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Definiteness

Let symmetric matrix A ∈ Rn×n has spectral decomposition

A = XΛX⊤

where Λ = diag(λ1, . . . , λn).

1 If A ≻ 0 then λi > 0 for i = 1, . . . , n.

2 If A ⪰ 0 then λi ≥ 0 for i = 1, . . . , n.

3 If A ≺ 0 then λi < 0 for i = 1, . . . , n.

4 If A ⪯ 0 then λi ≤ 0 for i = 1, . . . , n.
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Schur Complement

Given matrices A ∈ Rp×p, B ∈ Rp×q, C ∈ Rq×p and D ∈ Rq×q and
suppose D is non-singular. Let

M =

[
A B
C D

]
∈ R(p+q)×(p+q).

Then the Schur complement of the block D for M is

A− BD−1C ∈ Rp×p.

Then we can decompose the matrix M as

M =

[
A B
C D

]
=

[
I BD−1

0 I

] [
A− BD−1C 0

0 D

] [
I 0

D−1C I

]
and the inverse of M can be written as

M−1 =

[
A B
C D

]−1

=

[
I 0

−D−1C I

] [
(A− BD−1C)−1 0

0 D−1

] [
I −BD−1

0 I

]
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Schur Complement

The decomposition

M =

[
A B
C D

]
=

[
I BD−1

0 I

] [
A− BD−1C 0

0 D

] [
I 0

D−1C I

]
means we have det(M) = det(D) det(A− BD−1C).

Homework

Given the symmetric matrix

N =

[
A B
B⊤ D

]
with non-singular D and let S = D− B⊤A−1B, then

1 N ≻ 0 ⇐⇒ A ≻ 0 and S ≻ 0.

2 If A ≻ 0, then N ⪰ 0 ⇐⇒ S ⪰ 0.
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Cholesky Factorization

The symmetric positive-definite matrix A ∈ Rn×n has the decomposition
of the form

A = LL⊤

where L ∈ Rn×n is a lower triangular matrix with real and positive
diagonal entries such that

L =


+ 0 · · · 0
· + · · · 0
...

...
. . .

...
· · · · · +

 ∈ Rn×n.
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The Gradient

Suppose that f : Rm×n → R is a smooth function that takes as input a
matrix X of size m × n and returns a real value. Then the gradient of f
with respect to X is

∂f (X)

∂X
= ∇f (X) =


∂f (X)

∂x11
· · · ∂f (X)

∂x1n
...

. . .
...

∂f (X)

∂xm1
· · · ∂f (X)

∂xmn

 ∈ Rm×n.
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Some Basic Results

1 For X ∈ Rm×n, we have
∂(f (X) + g(X))

∂X
=

∂f (X)

∂X
+

∂g(X)

∂X
.

2 For X ∈ Rm×n and t ∈ R, we have
∂tf (X)

∂X
= t

∂f (X)

∂X
.

3 For A,X ∈ Rm×n, we have
∂tr(A⊤X)

∂X
= A.

4 For A ∈ Rn×n and x ∈ Rn, we have
∂x⊤Ax

∂x
= (A+ A⊤)x.

If A is symmetric, we have
∂x⊤Ax

∂x
= 2Ax.

We can find more results in the matrix cookbook:
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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The Hessian Matrix

Suppose that f : Rn → R is a smooth function that takes as input a
matrix x ∈ Rn and returns a real value. Then the Hessian matrix with
respect to x, written as ∇2f (x), which is defined as

∇2f (x) =


∂2f (x)

∂x1∂x1
· · · ∂2f (x)

∂x1∂xn
...

. . .
...

∂2f (x)

∂xn∂x1
· · · ∂2f (x)

∂xn∂xn

 ∈ Rn×n.

Taylor’s expansion for multivariable function f : Rn → R

f (x) ≈ f (a) +∇f (a)⊤(x− a) +
1

2
(x− a)⊤∇2f (a)(x− a)
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The Hessian Matrix

Suppose ∇2f (x) is continuous in an open neighborhood of x∗ and that
∇f (x∗) = 0 and ∇2f (x∗) ≻ 0. Then x∗ is a strict local minimizer of f .

1 What happens if ∇2f (x∗) ⪰ 0?

2 What happens if ∇2f (x) ⪰ 0 holds for any x?

Suppose x∗ is a local minimizer of twice differentiable f (x) and ∇2f (x) is
continuous in an open neighborhood of x∗, then ∇f (x∗) = 0 and
∇2f (x∗) ≥ 0.
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Least Squares

Consider the least square problem

min
x∈Rn

f (x) =
1

2
∥Ax− b∥22 .

where A ∈ Rm×n is full rank, b ∈ Rm and m ≥ n.

We have

f (x) =
1

2
x⊤(A⊤A)x− b⊤Ax+

1

2
b⊤b, ∇f (x) = A⊤Ax− A⊤b

and

∇2f (x) = A⊤A ≻ 0.
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Least Squares and Projection

The Hessian is positive definite implies the function is convex and we only
need to find x such that ∇f (x) = A⊤Ax− A⊤b = 0. Hence, we have

A⊤Ax = A⊤b =⇒ x = (A⊤A)−1A⊤b

For A ∈ Rm×n is full rank and m > n, we define the projection of a vector
b ∈ Rm onto R(A) by

Proj(b,A) = argmin
v∈R(A)

∥v − b∥22 = A(A⊤A)−1A⊤b.

How to solve the problem when A is not full rank?
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Pseudo Inverse

Let A = UrΣrV⊤
r ∈ Rm×n be the condense SVD, where r is the rank of

A. We define the pseudo inverse of A as

A† = VrΣ
−1
r U⊤

r ∈ Rn×m.

In special case, we have

1 If rank(A) = n, we have A† = (A⊤A)−1A⊤.

2 If rank(A) = m, we have A† = A⊤(AA⊤)−1.

3 If A is square and non-singular, we have A† = A−1.

The solution of the least square problem

min
x∈Rn

f (x) =
1

2
∥Ax− b∥22 .

is x̂ = A†b+ (I− A†A)y, where y ∈ Rn.
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The Gradient of ln det(·)

Consider the function f (A) = ln(det(A)) whose domain is n× n symmetric
positive definite matrices. Then we have

∇f (A) = A−1.

This also can be viewed as the extension of (ln a)′ = a−1 for a > 0.

Lecture 01 (Fudan University) MATH 620156 64 / 66



General Derivatives of Matrix Functions

Suppose that F : Rm×n → Rp×q is a function that takes as input a matrix
X of size m × n and returns a matrix F(X) of size p × q matrix, i.e,

X =


x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...
xm1 xm2 · · · xmn

 ∈ Rm×n

and

F(X) =


f11(X) f12(X) · · · f1n(X)
f21(X) f22(X) · · · f2n(X)

...
...

. . .
...

fm1(X) fm2(X) · · · fmn(X)

 ∈ Rp×q,

where fij : Rm×n → R for i = 1, . . . , p and j = 1, . . . , q.
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General Derivatives of Matrix Functions

Then the derivative of F with respect to X defined as

∂f (X)

∂X
= ∇f (X) =


∂f11(X)

∂X
· · · ∂f1n(X)

∂X
...

. . .
...

∂fm1(X)

∂X
· · · ∂fmn(X)

∂X

 ∈ Rmp×nq

where each sub-matrix
∂fij(X)

∂X
∈ Rp×q is the gradient of scalar-value

function fij(·).

Based on above notation, we can define the Hessian as

∇2f (x) =
∂2f (x)

∂x⊤∂x
.
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