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Univariate Least Squares

Consider scalar variables x1, . . . , xN drawn with expected values β>z1, . . . ,β
>zN

respectively, where each zα ∈ Rq is known and we shall estimate β.

1 The least squares estimator of β is

β̂ =

(
1

N

N∑
i=1

zαz>α

)−1(
1

N

N∑
i=1

xαzα

)
.

2 If the populations are normal, the vector β̂ is the maximum likelihood
estimator of β.

3 The unbiased estimator of the common variance σ2 is

s2 =
1

N − q

N∑
α=1

(xα − β̂>zα)2.

4 Under the normality assumption, the maximum likelihood estimator of σ2 is

σ̂2 =
(N − q)s2

N
.
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The Estimation in Multivariate Linear Regression

Theorem 1

Suppose xα is an observation from Nq(Bzα,Σ) for α = 1, . . . ,N, where
[z1, . . . , zN ] ∈ RN×q of rank q is given and N ≥ p + q, the maximum likelihood
estimator of B is given by

B̂ = CA−1,

where

C =
N∑
α=1

xαz>α and A =
N∑
α=1

zαz>α ;

the maximum likelihood estimator of Σ is give by

Σ̂ =
1

N

N∑
α=1

(xα − B̂zα)(xα − B̂zα)>.
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Properties of the Estimators

The likelihood function is

L(B,Σ) =
1

(2π)
Np
2 (det(Σ))

N
2

exp

(
−1

2

N∑
α=1

(xα − Bzα)>Σ−1(xα − Bzα)

)
.

We shall find Ĥ such that

N∑
α=1

(xα − Bzα)(xα − Bzα)>

=
N∑
α=1

(
(xα − Ĥzα)(xα − Ĥzα)> + (Ĥzα − Bzα)(Ĥzα − Bzα)>

)
.

Lemma 1

If A ∈ Rp×p and G ∈ Rp×p are positive definite, then tr
(
FAF>G

)
> 0 for

non-zero F ∈ Rp×p.
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Properties of the Estimators

The density then can be written as

1

(2π)
Np
2 (det(Σ))

N
2

exp

(
−1

2
tr
(

Σ−1
(
NΣ̂ + (B̂− B)A(B̂− B)>

)))
.

Then B̂ and Σ̂ form a sufficient set statistics for B and Σ.
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Distribution of the Estimators

Let βig (or β̂ig ) be the (i , g)-th element of B (or B̂).

1 The joint distribution of β̂ig is normal since the β̂ig are linear
combinations of the xiα.

2 We have E[B̂] = B, which means B̂ is an unbiased estimator of B.

3 The covariance between β̂>i and β̂>j (two rows of B̂) is σijA
−1.
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Distribution of the Estimators

It follows that

NΣ̂ =
N∑
α=1

xαx>α − B̂AB̂>

is distributed according to W(Σ,N − q).

Theorem 2

Suppose y1, . . . , ym are independent with yα distributed according to
N (Γwα,Φ), where wα is an r -component vector. Let H =

∑m
α=1 wαw>α

assumed non-singular, G =
∑m

α=1 yαw>αH−1 and

C =
m∑
α=1

(yα − Gwα)(yα − Gwα)> =
m∑
α=1

yαy>α − GHG>.

Then C is distributed as
∑m−r

α=1 uαu>α where u1, . . . ,um−r are
independently distributed according to N (0,Φ) independently of G.

Lecture 11 (Fudan University) MATH 620156 8 / 35



The Best Linear Unbiased Estimator

Let βig be the (i , g)-th entry of B.

An estimator F is a linear estimator of βig if

F =
N∑
α=1

f>α xα.

It is a linear unbiased estimator of βig if

βig = E[F ] = E

[
N∑
α=1

f>α xα

]
=

N∑
α=1

f>α Bzα =
N∑
α=1

p∑
j=1

q∑
h=1

fjαβjhzhα,

is an identity in B, that is, if

N∑
α=1

fjαzhα =

{
1, j = i , h = g ,

0, otherwise.
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The Best Linear Unbiased Estimator

A linear unbiased estimator F is best if it has minimum variance over all
linear unbiased estimators; that is, if E[(F − βig )2] ≤ E[(G − βig )2] for

G =
∑N

α=1 g>α xα and E[G ] = βig .

The least squares estimator B̂ is the best linear unbiased estimator of B.

1 Let β̃ig =
∑N

α=1

∑p
j=1 fjαxjα be arbitrary unbiased estimator of βig .

2 Then we have

E
[
(β̃ig − βig )2

]
=E

[
(β̂ig − βig )2

]
+ 2E

[
(β̂ig − βig )(β̃ig − β̂ig )

]
+ E

[
(β̃ig − β̂ig )2

]
=E

[
(β̂ig − βig )2

]
+ E

[
(β̃ig − β̂ig )2

]
≥E

[
(β̂ig − βig )2

]
.
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Likelihood Ratio Criteria

We partition

B =
[
B1 B2

]
so that B1 has q1 columns and B2 has q2 columns.

We shall derive the likelihood ratio criterion for testing the hypothesis

H : B1 = B∗1,

where B∗1 is a given matrix.
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Likelihood Ratio Criteria

The maximum of the likelihood function L for the sample x1, . . . , xN is

max
B∈Rp×q ,Σ∈S++

p

L(B,Σ) = (2π)−
pN
2 det

(
Σ̂Ω

)−N
2 exp

(
−pN

2

)
,

where

Σ̂Ω =
1

N

N∑
α=1

(xα − B̂zα)(xα − B̂zα)>.

Lecture 11 (Fudan University) MATH 620156 12 / 35



Likelihood Ratio Criteria

To find the maximum of the likelihood function with restricted to
B1 = B∗1, we partition

zα =

[
z

(1)
α

z
(2)
α

]
.

Let yα = xα − B∗1z
(1)
α , then yα ∼ N

(
B2z

(2)
α ,Σ

)
.

Similar to the derivation of B̂, the estimator of B2 is

B̂2ω =
N∑
α=1

yαz(2)
α A−1

22 =
N∑
α=1

(
xα − B∗1z(1)

α

)
z(2)
α A−1

22 =
(
C2 − B∗1A12

)
A−1

22 ,

with

C =
[
C1 C2

]
and A =

[
A11 A12

A21 A22

]
.
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Likelihood Ratio Criteria

The estimator of Σ is given by

NΣ̂ω =
N∑
α=1

(
yα − B̂2ωz(2)

α

)(
yα − B̂2ωz(2)

α

)>
=

N∑
α=1

yαy>α − B̂2ωA−1
22 B̂>2ω

=
N∑
α=1

(
xα − B∗1z(1)

α

)(
xα − B∗1z(1)

α

)> − B̂2ωA−1
22 B̂>2ω.

Thus the maximum of the likelihood function over ω is

(2π)−
pN
2 det

(
Σ̂ω

)−N
2 exp

(
−pN

2

)
.
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The Likelihood Ratio Criterion for Testing

The likelihood ratio criterion for testing H is

λ =

(
det
(
Σ̂Ω

))N
2(

det
(
Σ̂ω

))N
2

.

In testing H, one rejects the hypothesis if λ < λ0 where λ0 is a suitably
chosen number.

The likelihood ratio criterion for testing the null hypothesis B1 = 0 is
invariant with respect to transformations x∗α = Dxα for α = 1, . . . ,N and
non-singular D.
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Testing Equality of Means with Common Covariance

Let x
(g)
α be an observation from the g -th population N (µ(g),Σ) for

α = 1, . . . ,Ng , g = 1, . . . , q.

We wish to test the hypothesis

H0 : µ1 = · · · = µg .

The likelihood function is

L =

q∏
g=1

1

(2π)
pNg

2 (det(Σ))
Ng
2

exp

(
− 1

2

Ng∑
α=1

(
x(g)
α − µ(g)

)>
Σ−1

(
x(g)
α − µ(g)

))
.

1 The space Ω is the parameter space in which Σ is positive definite and each
µ(g) is any vector.

2 The space ω is the parameter space in which µ1 = · · · = µg (positive
definite) and Σ is any positive definite matrix.
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Testing Equality of Means with Common Covariance

Let x
(g)
α be an observation from the g -th population N (µ(g),Σg ) for

α = 1, . . . ,Ng , g = 1, . . . , q.

We wish to test the hypothesis H1 : µ1 = · · · = µg .

Let N =
∑q

g=1 Ng , A =
∑q

g=1 Ag ,

Ag =

Ng∑
α=1

(
x(g)
α − x̄(g)

)(
x(g)
α − x̄(g)

)>
and B =

q∑
g=1

Ng∑
α=1

(
x(g)
α − x̄

)(
x(g)
α − x̄

)>
.

The maximum likelihood estimators of µ(g) and Σ in Ω are given by

µ̂
(g)
Ω = x̄(g) and Σ̂Ω =

1

N
A.

The maximum likelihood estimators of µ(g) and Σ in ω are given by

µ̂(g)
ω = x̄ and Σ̂ω =

1

N
B.
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Testing Equality of Means with Common Covariance

Lemma 2

If D ∈ Rp×p is positive definite, the maximum of

f (G) = −N ln det(G)− tr(G−1D)

with respect to positive definite matrices G exists, occurs at G = 1
N D.
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Testing Equality of Means with Common Covariance

The likelihood ratio criterion for testing H0 is

λ0 =

(
det
(
Σ̂Ω

))N
2(

det
(
Σ̂ω

))N
2

=
(det(A))

N
2

(det(B))
N
2

.

The critical region is

λ0 ≤ λ0(ε),

where λ0(ε) is defined so that above inequality holds with probability ε
when H0 is true.
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Testing Equality of Several Covariance Matrices

Let x
(g)
α be an observation from the g -th population N (µ(g),Σg ) for

α = 1, . . . ,Ng , g = 1, . . . , q.

We wish to test the hypothesis

H1 : Σ1 = · · · = Σg .

The likelihood function is

L =

q∏
g=1

1

(2π)
pNg

2 (det(Σg )
Ng
2

exp

(
− 1

2

Ng∑
α=1

(
x(g)
α − µ(g)

)>
Σ−1

g

(
x(g)
α − µ(g)

))
.

1 The space Ω is the parameter space in which each Σg is positive definite
and µ(g) are any vector.

2 The space ω is the parameter space in which Σ1 = · · · = Σg (positive
definite) and µ(g) are any vector.
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Testing Equality of Several Covariance Matrices

Let

N =

q∑
g=1

Ng , Ag =

Ng∑
α=1

(
x(g)
α − x̄(g)

)(
x(g)
α − x̄(g)

)>
and A =

q∑
g=1

Ag .

The maximum likelihood estimators of µ(g) and Σg in Ω are given by

µ̂
(g)
Ω = x̄(g) and Σ̂gΩ =

1

Ng
Ag .

The maximum likelihood estimators of µ(g) and Σg in ω are given by

µ̂
(g)
Ω = x̄(g) and Σ̂gΩ =

1

N
A.
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Testing Equality of Several Covariance Matrices

The likelihood ratio criterion for testing H1 is

λ1 =

∏q
g=1

(
det
(
Σ̂gΩ

))Ng
2(

det
(
Σ̂ω

))N
2

=

∏q
g=1(det(Ag ))

Ng
2

(det(A))
N
2

· N
pN
2∏q

g=1 N
pNg

2
g

.

The critical region is

λ1 ≤ λ1(ε),

where λ1(ε) is defined so that above inequality holds with probability ε
when H1 is true.
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Testing Equality of Several Covariance Matrices

Bartlett (1937a) has suggested using the numbers of degrees of freedom.
Except for constants, the statistic is

V1 =

∏q
g=1(det(Ag ))

ng
2

(det(A))
n
2

,

where ng = Ng − 1 and n = N − q.

The statistic is invariant with respect to linear transformation

x∗(g) = Cx(g) + ν(g).
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Testing that Several Normal Distribution are Identical

Let x
(g)
α be an observation from the g -th population N (µ(g),Σg ) for

α = 1, . . . ,Ng , g = 1, . . . , q.

We wish to test

H2 : µ(1) = · · · = µ(q), Σ1 = · · · = Σq. (1)

1 Let Ω be the unrestricted parameter space of {µ(g),Σg}qg=1, where Σg is
positive definite; and ω∗ consists of the space restricted by (1).

2 The likelihood function is

L =

q∏
g=1

1

(2π)
pNg

2 (det(Σg )
Ng
2

exp

(
− 1

2

Ng∑
α=1

(
x(g)
α − µ(g)

)>
Σ−1

g

(
x(g)
α − µ(g)

))
.
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Testing that Several Normal Distribution are Identical

Let y be an observation with density f (y;θ), where θ is a parameter vector in a
space Ω.

1 Let Ha be the hypothesis θ ∈ Ωa ⊂ Ω.

2 Let Hb be the hypothesis θ ∈ Ωb ⊂ Ωa given θ ∈ Ωa.

3 Let Hab be the hypothesis θ ∈ Ωb given θ ∈ Ω.

If the likelihood ratio criterion λa, λb and λab for testing Ha, Hb and Hab are
uniquely defined for the observation vector y, then we have

λa =
maxθ∈Ωa f (y;θ)

maxθ∈Ω f (y;θ)
, λb =

maxθ∈Ωb
f (y;θ)

maxθ∈Ωa f (y;θ)
and λab =

maxθ∈Ωb
f (y;θ)

maxθ∈Ω f (y;θ)
.

Hence, λab = λaλb.
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Testing that Several Normal Distribution are Identical

Recall that

1 H1 : Σ1 = · · · = Σg ;

2 H0 : µ(1) = · · · = µ(q) given Σ1 = · · · = Σq.

3 H2 : µ1 = · · · = µg , Σ1 = · · · = Σq;

Then we have

λ2 = λ1λ0 =

∏q
g=1(det(Ag ))

Ng
2

(det(A))
N
2

· N
pN
2∏q

g=1 N
pNg

2
g

· (det(A))
N
2

(det(B))
N
2

=

 q∏
g=1

(det(Ag ))
Ng
2

N
pNg

2
g

 N
pN
2

(det(B))
N
2

.

Lecture 11 (Fudan University) MATH 620156 26 / 35



Outline

1 Multivariate Linear Regression

2 Likelihood Ratio Criterion for Testing Linear Hypotheses

3 Testing Equality of Means with Common Covariance

4 Testing Equality of Several Covariance Matrices

5 Testing that Several Normal Distribution are Identical

6 Testing that the Covariance is Proportional to a Given Matrix

7 Testing that the Covariance is Equal to a Give Matrix

Lecture 11 (Fudan University) MATH 620156 27 / 35



Testing that the Covariance is Proportional to I

We use a sample of p-component vectors x1, . . . , xN from N (µ,Σ) to test
the hypothesis

H : Σ = σ2I,

where σ2 is not specified.

The hypothesis H is a combination of the hypothesis:

1 H1 : Σ is diagonal;

2 H2 : The diagonal elements of Σ are equal given that Σ is diagonal.
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Testing that the Covariance is Proportional to I

The criterion for H1 is

λ1 =
(det(A))

N
2∏p

i=1 a
N
2
ii

,

where A =
∑N

α=1(xα − x̄)(xα − x̄)> and aij is the (i , j)-th element of A.
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Testing that the Covariance is Proportional to I

We can find λ2 by considering test equality of several covariance matrices.

1 View the ith component of xα as the α-th observation from the i-th
population.

2 p here is q in the section of testing equality of several covariance
matrices; N here is Ng there; pN here is N there.

3 Thus, we have

λ2 =

∏p
i=1

(∑N
α=1(xiα − x̄i )

2
)N

2

(∑p
i=1

∑N
α=1(xiα − x̄i )2/p

) pN
2

=

∏p
i=1 a

N
2
ii

(tr(A)/p)
pN
2

.
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Testing that the Covariance is Proportional to I

Thus the criterion for H is

λ1λ2 =
(det(A))

N
2∏p

i=1 a
N
2
ii

·
∏p

i=1 a
N
2
ii

(tr(A)/p)
pN
2

=
(det(A))

N
2

(tr(A)/p)
pN
2

.
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Testing that the Covariance is Proportional to Ψ0

For the hypothesis

Σ = σ2Ψ0,

let C be matrix such that

CΨ0C> = I,

x∗α = Cx, µ∗ = Cµ and Σ∗ = CΣC>.

Then hypothesis is transformed into Σ∗ = σ2Ψ0 and the criterion is

(det(AΨ−1
0 ))

N
2

(tr(AΨ−1
0 )/p)

pN
2

.
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Testing that the Covariance is Equal to a Give Matrix

We use a sample of p-component vectors x1, . . . , xN from N (µ,Σ) to test
the hypothesis

Σ = I.

The likelihood ratio criterion is

λ1 =

max
µ∈Rp

L(µ, I)

max
µ∈Rp ,Σ∈S++

p

L(µ,Σ)
,

where

L(µ,Σ) =
1

(2π)
pN
2 (det(Σ))

N
2

exp

(
− 1

2

N∑
α=1

(
xα − µ

)>
Σ−1

(
xα − µ

))
.
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Testing that the Covariance is Equal to a Give Matrix

Then we have

λ1 =
(2π)−

pN
2 exp

(
− 1

2

∑N
α=1

(
xα − x̄

)>(
xα − x̄

))
(2π)−

pN
2 det

(
1
N A
)−N

2 exp
(
−pN

2

)
=
( e

N

) pN
2

(det(A))
N
2 exp

(
−tr(A)

2

)
,

where A =
∑N

α=1(xα − x̄)(xα − x̄)>.
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Testing that the Covariance is Equal to a Give Matrix

To test the hypothesis

H1 : Σ = Σ0.

The likelihood ratio criterion is

λ1 =
( e

N

) pN
2

(det(AΣ−1
0 ))

N
2 exp

(
−
tr(AΣ−1

0 )

2

)
.
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Testing that the Mean and the Covariance Simultaneously

Theorem 3

Given the p-component observation vectors x1, . . . , xN , from N (µ,Σ), the
likelihood ratio criterion for testing the hypothesis

H : µ = µ0, Σ = Σ0

is

λ =
( e

N

) pN
2 (

det
(
AΣ−1

0

)) N
2 exp

(
−1

2

(
tr
(
AΣ−1

0

)
+ N(x̄− µ0)>Σ−1

0 (x̄− µ0)
))

,

where A =
∑N
α=1(xα − x̄)(xα − x̄)>.

We consider hypothesises

1 H1 : Σ = Σ0;

2 H2 : µ = µ0 given Σ = Σ0.
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