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Univariate Least Squares

Consider scalar variables xi, ..., xy drawn with expected values 37z;,...,8 zy
respectively, where each z, € R9 is known and we shall estimate 3.

© The least squares estimator of 3 is
-1

. 1 1Y
(i) ()

@ If the populations are normal, the vector B is the maximum likelihood
estimator of 3.

© The unbiased estimator of the common variance o2 is

N

1 A
S R SRR

a=1
@ Under the normality assumption, the maximum likelihood estimator of o2 is

~2 (/V*CI)S2
g —7N .
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The Estimation in Multivariate Linear Regression

Suppose X, is an observation from Ng(Bz,, X) for a = 1,..., N, where

[z1,...,2zn] € RNX9 of rank q is given and N > p + g, the maximum likelihood
estimator of B is given by

B=CcA !,

where

N N

T T.

C= E XaZ,, and A= g Z02Z,;
a=1 a=1

the maximum likelihood estimator of X is give by

N
) - Z = Bza Xo — I§za)T.
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Properties of the Estimators

The likelihood function is

L(B,X) =

(2m) F(det(Z)E ( 2

We shall find H such that

N

Z(XO‘ — Bz, )(xa — Bza)T

= i ((xa — Hz,)(xo — Az,) " 4 (Az, — Bz, )(Hz, — Bza)T).

If A € RP*P and G € RP*P are positive definite, then tr(FAFTG) > 0 for
non-zero F € RP*P,
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Properties of the Estimators

The density then can be written as

(27r)”2"(jet(z))2“ exp (—;tr ():—1 (Nﬁ +(B-B)A(B - B)T>>) .

Then B and ¥ form a sufficient set statistics for B and X.
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Distribution of the Estimators

Let Bz (or Big) be the (i, g)-th element of B (or B).

© The joint distribution of B;g is normal since the B,-g are linear
combinations of the x;,.

@ We have E[IAB] = B, which means B is an unbiased estimator of B.

@ The covariance between 3] and B]— (two rows of B) is AL,
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Distribution of the Estimators

It follows that
N
Z ~BABT
is distributed according to W(X, N — q).

Theorem 2

Suppose yi, ..., Ym are independent with y,, distributed according to
N(Twg, ®), where w,, is an r-component vector. Let H = """ 1wawT
assumed non-singular, G = ", yow,/H™! and

C= Z(Ya - GWa)(Ya - Gwa)T = Z yayl — GHGT.
a=1 =
Then C is distributed as Za 1 uau where uy, ..., u,_, are

independently distributed according to N(0, ®) independently of G.
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The Best Linear Unbiased Estimator

Let 3;z be the (i, g)-th entry of B.

An estimator F is a linear estimator of 3y if

N
F = Z flx,.
a=1

It is a linear unbiased estimator of 3, if

N N N p gq
B =EIF] =E [Z fa ] =2 Bz =2 > > fubinzha:
a=1 a=1

a=1 j=1 h=1

is an identity in B, that is, if

N 1, j=ih=g,
Gazha = 0

o , otherwise.
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The Best Linear Unbiased Estimator

A linear unbiased estimator F is best if it has minimum variance over all
linear unbiased estimators; that is, if E[(F — 8)?] < E[(G — Bg)?] for
G =N glx, and E[G] = fj.

The least squares estimator B is the best linear unbiased estimator of B.

Q Let B,-g = ngzl _1 fjaXjo be arbitrary unbiased estimator of 3is.
@ Then we have

E|(Bs - 8s)?
—E [(Big — Bo)?] + 2E [(Big — Bie) (Big — ie)| + B [(Big - Bio)?]
=E :(Big e 2| +E [(Big - Big)z]

7
7
)
> (B - ]
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Likelihood Ratio Criteria

We partition
B = [Bl Bz}

so that B; has g; columns and B; has g> columns.

We shall derive the likelihood ratio criterion for testing the hypothesis
H:B; = Bj,

where B] is a given matrix.
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Likelihood Ratio Criteria

The maximum of the likelihood function L for the sample x1,...,xpy is

BN o N pN
max  L(B,X)=(27)" 2 det (£q) ? ex (—)
BERPx4, XcS;T ( )= (2n) ( Q) P 2

where

N
Z Bza Xo — Bza)T.
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Likelihood Ratio Criteria

To find the maximum of the likelihood function with restricted to
B: = B, we partition

A

42

Let yo = Xo — B{zg), then y, ~ N(Bgzg), Z).

Z, =

Similar to the derivation of I§ the estimator of B» is

N N
=3 yaz@A =) (% — Biz())zPA; = (Co — BiAR)A,;,

a=1

with

Ain Ap
c-[c, C d A= -
€1 G e [AZI A2J
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Likelihood Ratio Criteria

The estimator of X is given by
N
Nzw = Z (ya - B2wz((y2)) (ya - BZwZ((XZ))T
N
= Ya¥a — BauAyBg,
N
=) (% - B;z(Y) (xq — B;zg>)T — By,AL) B,
Thus the maximum of the likelihood function over w is
LN N
(2%)_% det (X,) 2 exp (_p> .

2
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The Likelihood Ratio Criterion for Testing

The likelihood ratio criterion for testing H is

=

(det (iQ))
(det (£.))

NN

In testing H, one rejects the hypothesis if A < Ag where \g is a suitably
chosen number.

The likelihood ratio criterion for testing the null hypothesis B; = 0 is
invariant with respect to transformations x’, = Dx,, fora =1,..., N and
non-singular D.
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Testing Equality of Means with Common Covariance

Let ng) be an observation from the g-th population J\/'(u(g)7 Y) for
a=1,....N;, g=1,...,q

We wish to test the hypothesis

Ho:pa= = pg.

The likelihood function is

=1 (det( NE " (

© The space Q is the parameter space in which X is positive definite and each
1(8) is any vector.

I\)\r—\

Ng
Z ) E 1 (x® - u(g))>-

© The space w is the parameter space in which p; = --- = p, (positive
definite) and X is any positive definite matrix.
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Testing Equality of Means with Common Covariance

Let xff) be an observation from the g-th population J\/(u(g)7 3,) for
a=1,....N;, g=1,...,q

We wish to test the hypothesis Hy : pg = --- = pg.

Let N=30 N, A=Y7_ A,,

N, q N
= Z x(g x(g) — x(g) and ZZ (xff) - X) (xff) — )_()T.
- g=la=1

The maximum likelihood estimators of ©(8) and X in Q are given by

The maximum likelihood estimators of p(8) and X in w are given by

.1
18) =% and %¥,= -B.
0% X an ©w Ty
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Testing Equality of Means with Common Covariance

If D € RP*P is positive definite, the maximum of

f(G) = —NIndet(G) — tr(G™'D)

with respect to positive definite matrices G exists, occurs at G = ﬁD.
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Testing Equality of Means with Common Covariance

The likelihood ratio criterion for testing Hy is

—~
o
o)
—+
—
s
N
ST NI

The critical region is

Ao < Ao(e),

where \o(€) is defined so that above inequality holds with probability e

when Hy is true.
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Testing Equality of Several Covariance Matrices

Let ng) be an observation from the g-th population J\/'(u(g)7 3, ) for
a=1,....N;, g=1,...,q

We wish to test the hypothesis

le}:l:---:zg.

The likelihood function is

s

7 &P
(det( g) 2

@ The space Q2 is the parameter space in which each X, is positive definite
and p(8) are any vector.

© The space w is the parameter space in which X1 = --- = X, (positive

definite) and (&) are any vector.
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Testing Equality of Several Covariance Matrices

Let
q Neg
N=> N Ag=) (x& —x&))(xE) —x@) " and A= ZA
g=1 a=1

The maximum likelihood estimators of ;L(g) and X, in Q are given by
- 1
a8 =x6) and F.0=-—A,.
Neg

The maximum likelihood estimators of p(&) and 2, in w are given by
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Testing Equality of Several Covariance Matrices

The likelihood ratio criterion for testing H is

Ng
2

I (det(Ag)F  NE
N ) pNg *
(det(A))2 [10_1 Ng?

- [T (0t (£40))
(det (£.,))*

The critical region is
A1 < Aa(e),

where A1 (¢€) is defined so that above inequality holds with probability €
when Hj is true.

Lecture 11 (Fudan University) MATH 620156 22 /35



Testing Equality of Several Covariance Matrices

Bartlett (1937a) has suggested using the numbers of degrees of freedom.
Except for constants, the statistic is

)

9 (det(Ag)) %
(det(A))?

where ng = Ny —1and n= N —q.

The statistic is invariant with respect to linear transformation

x*(8) = cx(8) 4+ p(8),

Lecture 11 (Fudan University) MATH 620156 23 /35



Outline

© Testing that Several Normal Distribution are Identical

Lecture 11 (Fudan University) MATH 620156 24 / 35



Testing that Several Normal Distribution are Identical

Let x(of") be an observation from the g-th population J\/'(u(g)7 3,) for
a=1,....N;, g=1,...,q

We wish to test

Hy - g = = p@) T ==X, (1)

@ Let Q be the unrestricted parameter space of {u(®), g}g 1 Where X is
positive definite; and w* consists of the space restricted by (1).

@ The likelihood function is

ﬁ < ;i (@) )T (x(8) - u(g)))_

5o (2m) % (det(z )* o
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Testing that Several Normal Distribution are Identical

Let y be an observation with density f(y; @), where 0 is a parameter vector in a
space €.

@ Let H, be the hypothesis 8 € Q, C Q.
@ Let H, be the hypothesis 8 € Q, C Q, given 8 € Q,.
© Let H,p, be the hypothesis 8 € Q,, given 8 € Q.

If the likelihood ratio criterion \;, Ap and A, for testing H,, Hp and H,p are
uniquely defined for the observation vector y, then we have

\. _ maxeeq, (y: ) _ maxgeq, f(y; 0)

- maxaca, f(y:0)
maxgeq f(y;0)’ maxgeq, f(y; 0)

and A, = maxeca Fly: 0)

Hence, Asp = A .
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Testing that Several Normal Distribution are Identical

Recall that
(1) le}:l:-..:}:g;
@ Ho:pWM = = pul@ given X, = =X,
Then we have
N,
N A =@t A E T (det(A))?
(det(A))* I Ng”% (det(B))2

I (det(Ag))E )\ NT

RV S o ety
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Testing that the Covariance is Proportional to |

We use a sample of p-component vectors xi, ..., xy from N (u, X) to test
the hypothesis
H: ¥ =l

2

where o< is not specified.

The hypothesis H is a combination of the hypothesis:
Q@ H;: X is diagonal;
@ H, : The diagonal elements of X are equal given that X is diagonal.
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Testing that the Covariance is Proportional to |

The criterion for Hy is

P

NS

(det(A))

i=19ji

where A = Zgzl(xa —X)(xo —X)" and aj; is the (i,j)-th element of A.
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Testing that the Covariance is Proportional to |

We can find \» by considering test equality of several covariance matrices.
@ View the ith component of x,, as the a-th observation from the i-th
population.
@ p hereis g in the section of testing equality of several covariance
matrices; N here is Ny there; pN here is N there.
© Thus, we have

N
P (SN G —%)?) b o}

Ay = _ i=1 i

(50,50 (= R2/p) T (B(APT
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Testing that the Covariance is Proportional to |

Thus the criterion for H is

AtAp = (det(A))* L af,%'l _ (det(A))

paz (t(A)/p)T  (tx(A)/p)

N
NHIEE
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Testing that the Covariance is Proportional to Wy

For the hypothesis

T = oW,
let C be matrix such that

Cw,C' =1,
x* = Cx, u* = Cp and X* = CXC'.

Then hypothesis is transformed into X* = 0?Wq and the criterion is

N
2

(det(Awg™))
(tr(AWgY)/p) 7
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Testing that the Covariance is Equal to a Give Matrix

We use a sample of p-component vectors xi, ..., xy from N (u, X) to test
the hypothesis

=1

The likelihood ratio criterion is

L(p, 1
N max (w1
T max L(p,E)

HERP XESHT

where

= ! ex —1Nx—T1x—>
L(“’z)_(QT()%(det(Z))% p( 2;( «a l"’) b2 (04 H) :
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Testing that the Covariance is Equal to a Give Matrix

Then we have
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Testing that the Covariance is Equal to a Give Matrix

To test the hypothesis
Hi: X =1%.

The likelihood ratio criterion is

pN

o N T ~1
M= (5)7 (det(Az; )t exp (—t(Azz‘))> '
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Testing that the Mean and the Covariance Simultaneously

Given the p-component observation vectors xi, . .., Xy, from N (u, X), the
likelihood ratio criterion for testing the hypothesis

H:H’:H’Oa Z:zo

A= (%) E (det (AX51))? exp (—; (tr(AEg?) + N(& — o) "X (R — uo))) 7

where A =YV (x4 —X)(xo — %) 7.

We consider hypothesises
Q Hi: X =13
Q Hy:p=ppgiven X =X
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