Multivariate Statistics

Lecture 10

Fudan University

Lecture 10 (Fudan University)

MATH 620156

э

イロト イポト イヨト イヨト

1 The Density of the Wishart Distribution

2

イロト イヨト イヨト イヨト

1 The Density of the Wishart Distribution

Properties of the Wishart Distribution

э

イロト イヨト イヨト イヨト

- 1 The Density of the Wishart Distribution
- 2 Properties of the Wishart Distribution

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

- 1 The Density of the Wishart Distribution
- Properties of the Wishart Distribution
- The Generalized Variance (3)

Distribution of the Set of Correlation Coefficients

イロト イポト イヨト イヨト

- 1 The Density of the Wishart Distribution
- Properties of the Wishart Distribution
 - The Generalized Variance
- (4)
 - Distribution of the Set of Correlation Coefficients

5 The Inverted Wishart Distribution

- 4 回 ト 4 三 ト 4 三 ト

1 The Density of the Wishart Distribution

・ 何 ト ・ ヨ ト ・ ヨ ト

We shall obtain the distribution of

$$\mathbf{A} = \sum_{lpha=1}^{N} (\mathbf{x}_{lpha} - ar{\mathbf{x}}) (\mathbf{x}_{lpha} - ar{\mathbf{x}})^{ op},$$

where $\mathbf{x}_1, \ldots, \mathbf{x}_N$ are independent, each with the distribution $\mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and N > p.

We have shown that **A** is distributed as $\sum_{\alpha=1}^{n} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$ where n = N - 1 and $\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}$ are independent, each with the distribution $\mathcal{N}_{p}(\mathbf{0}, \mathbf{\Sigma})$.

We shall show that the density of **A** for **A** positive definite is

$$\frac{\left(\det(\mathbf{A})\right)^{\frac{n-p-1}{2}}\exp\left(-\frac{1}{2}\mathrm{tr}\left(\mathbf{\Sigma}^{-1}\mathbf{A}\right)\right)}{2^{\frac{np}{2}}\pi^{\frac{p(p-1)}{4}}\left(\det(\mathbf{\Sigma})\right)^{\frac{n}{2}}\prod_{i=1}^{p}\Gamma\left(\frac{1}{2}(n+1-i)\right)}.$$

イロト 不得 トイラト イラト 一日

We shall first consider the case of $\pmb{\Sigma}=\pmb{\mathsf{I}}.$ Let

$$\begin{bmatrix} \mathbf{z}_1 & \dots & \mathbf{z}_n \end{bmatrix} = \begin{bmatrix} \mathbf{v}_1^\top \\ \vdots \\ \mathbf{v}_p^\top \end{bmatrix} \in \mathbb{R}^{p \times n}.$$

Then the (i, j)-th elements of **A** can be written as

$$a_{ij} = \mathbf{v}_i^\top \mathbf{v}_j$$

and vectors $\mathbf{v}_1, \ldots, \mathbf{v}_p$ are independently distributed according to $\mathcal{N}_n(\mathbf{0}, \mathbf{I})$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Applying Gram-Schmidt orthogonalization on $\mathbf{v}_1, \ldots, \mathbf{v}_p$.

• Let
$$\mathbf{w}_1 = \mathbf{v}_1$$
 and $\mathbf{w}_i = \mathbf{v}_i - \sum_{j=1}^{i-1} \frac{\mathbf{w}_j^\top \mathbf{v}_i}{\|\mathbf{w}_j\|_2^2} \cdot \mathbf{w}_j$ for $i = 2, \dots, p$.

We can prove by induction that w_k is orthogonal to w_i for k < i.
We can show that Pr(||w_i||₂ = 0) = Pr(rank(A) < p) = 0.

Define the $p \times p$ lower triangular matrix **T** ($t_{ij} = 0$ for i < j) with

$$t_{ii} = \|\mathbf{w}_i\|_2$$
 for $i = 1, ..., p$;
 $t_{ij} = \frac{\mathbf{w}_j^{\top} \mathbf{v}_i}{\|\mathbf{w}_j\|_2}$ for $j = 1, ..., i - 1, i = 2, ..., p$.

Then we have

$$\mathbf{v}_{i} = \sum_{j=1}^{i} \frac{t_{ij} \mathbf{w}_{j}}{\|\mathbf{w}_{j}\|_{2}}, \quad \begin{bmatrix} | & | & | \\ \mathbf{v}_{1} & \dots & \mathbf{v}_{p} \\ | & | \end{bmatrix} = \begin{bmatrix} | & | & | \\ \frac{\mathbf{w}_{1}}{\|\mathbf{w}_{1}\|_{2}} & \dots & \frac{\mathbf{w}_{p}}{\|\mathbf{w}_{p}\|_{2}} \end{bmatrix} \mathbf{T}^{\top} \text{ and } \mathbf{A} = \mathbf{T}\mathbf{T}^{\top}.$$

Lecture 10 (Fudan University)

The formula

$$\mathbf{v}_i = \sum_{j=1}^i rac{t_{ij}}{\left\|\mathbf{w}_j
ight\|_2} \cdot \mathbf{w}_j$$

means t_{ij} for j = 1, ..., i - 1 are the first i - 1 coordinates of \mathbf{v}_i in the coordinate system with $\mathbf{w}_1, ..., \mathbf{w}_{i-1}$.

The sum of the other n - i + 1 coordinates squared is

$$\|\mathbf{v}_i\|_2^2 - \sum_{j=1}^{i-1} t_{ij}^2 = t_{ii}^2 = \|\mathbf{w}_i\|_2^2.$$

<ロト <部ト <注入 < 注入 = 二 =

There exist $\mathbf{w}'_i, \ldots, \mathbf{w}'_n$ and t'_{ii}, \ldots, t'_{in} such that

$$\mathbf{v}_i = \sum_{j=1}^{i-1} \frac{t_{ij}}{\|\mathbf{w}_j\|_2} \cdot \mathbf{w}_j + \sum_{j=i}^n \frac{t'_{ij}}{\|\mathbf{w}'_j\|} \cdot \mathbf{w}'_j = \mathbf{W}_i \mathbf{t}'_i$$

where

is orthogonal. Then we have $\mathbf{t}_i' = \mathbf{W}_i^\top \mathbf{v}_i$.

(本部) (本語) (本語) (二語)

Lemma 1

Conditional on $\mathbf{w}_1, \ldots, \mathbf{w}_{i-1}$ (or equivalently on $\mathbf{v}_1, \ldots, \mathbf{v}_{i-1}$), then random variables t_{i1}, \ldots, t_{ii-1} are independently distributed and t_{ij} is distributed according to $\mathcal{N}(0, 1)$ for i > j; and t_{ii}^2 has the χ^2 -distribution with n - i + 1 degrees of freedom.

The sketch of the proof:

- **(**) Conditional on $\mathbf{w}_1, \ldots, \mathbf{w}_{i-1}$, the matrix \mathbf{W}_i is fixed.
- **2** We have $\mathbf{t}'_i = \mathbf{W}_i^\top \mathbf{v}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ since $\mathbf{v}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and $\mathbf{W}^\top \mathbf{W} = \mathbf{I}$.
- We have $t_{ii}^2 = \|\mathbf{v}_i\|_2^2 \sum_{j=1}^{i-1} t_{ij}^2 = \sum_{j=i}^n t_{ij}'^2$, where each t_{ij}' are independently distributed according to $\mathcal{N}(0, 1)$ for $j = i, \dots, n$.

Since the conditional distribution of t_{i1}, \ldots, t_{ii} does not depend on $\mathbf{v}_1, \ldots, \mathbf{v}_{i-1}$, they are distributed independently of $t_{11}, t_{21}, t_{22}, \ldots, t_{i-1,i-1}$.

Corollary 1

Let z_1, \ldots, z_n be independently distributed, each according to $\mathcal{N}_p(\mathbf{0}, \mathbf{I})$, where $n \ge p$; let

$$\mathbf{A} = \sum_{\alpha=1}^{n} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} = \mathbf{T} \mathbf{T}^{\top},$$

where $t_{ij} = 0$ for i < j, and $t_{ii} > 0$ for i = 1, ..., p. Then $t_{11}, t_{21}, ..., t_{pp}$ are independently distributed; t_{ij} is distributed according to $\mathcal{N}(0, 1)$ for i > j; and t_{ii}^2 has the χ^2 -distribution with n - i + 1 degrees of freedom.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

Theorem 2

Let z_1, \ldots, z_n be independently distributed, each according to $\mathcal{N}_p(\mathbf{0}, \mathbf{\Sigma})$, where $n \geq p$; let

$$\mathbf{A} = \sum_{\alpha=1}^{n} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} = \mathbf{T}^* \mathbf{T}^{*\top},$$

where $t_{ij}^* = 0$ for i < j, and $t_{ii}^* > 0$ for i = 1, ..., p. Then the density of \mathbf{T}^* is

$$\frac{\prod_{i=1}^{p} t_{ii}^{*n-i} \exp\left(-\frac{1}{2} \text{tr} \left(\boldsymbol{\Sigma}^{-1} \mathbf{T}^{*} \mathbf{T}^{*\top}\right)\right)}{2^{\frac{p(n-2)}{2}} \pi^{\frac{p(p-1)}{4}} \left(\det(\boldsymbol{\Sigma})\right)^{\frac{n}{2}} \prod_{i=1}^{p} \Gamma\left(\frac{1}{2}(n+1-i)\right)}$$

(本部) (本語) (本語) (二語)

Theorem 3

Let $\mathbf{z}_1, \ldots, \mathbf{z}_n$ be independently distributed, each according to $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$, where $n \geq p$. Then the density of $\mathbf{A} = \sum_{\alpha=1}^n \mathbf{z}_\alpha \mathbf{z}_\alpha^\top$ is

$$\frac{\left(\det(\mathbf{A})\right)^{\frac{n-p-1}{2}}\exp\left(-\frac{1}{2}\mathrm{tr}\left(\mathbf{\Sigma}^{-1}\mathbf{A}\right)\right)}{2^{\frac{np}{2}}\pi^{\frac{p(p-1)}{4}}\left(\det(\mathbf{\Sigma})\right)^{\frac{n}{2}}\prod_{i=1}^{p}\Gamma\left(\frac{1}{2}(n+1-i)\right)}$$
(1)

for A positive definite, and 0 otherwise.

Corollary 2

Let $\mathbf{x}_1, \ldots, \mathbf{x}_N$ be independently distributed, each according to $\mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where N > p; Then the density of $\mathbf{A} = \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}$ is (1), where n = N - 1 and $\mathbf{x} = \frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha}$.

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

The multivariate gamma function is defined as

$$\Gamma_{p}(t) = \pi^{\frac{p(p-1)}{4}} \prod_{i=1}^{p} \Gamma\left(t - \frac{1}{2}(i-1)\right).$$

Then the Wishart density can be written as

$$\frac{(\det(\mathbf{A}))^{\frac{n-p-1}{2}}\exp\left(-\frac{1}{2}\mathrm{tr}\left(\mathbf{\Sigma}^{-1}\mathbf{A}\right)\right)}{2^{\frac{np}{2}}\left(\det(\mathbf{\Sigma})\right)^{\frac{n}{2}}\mathsf{\Gamma}_{p}\left(\frac{n}{2}\right)}.$$

э

<ロト <回ト < 回ト < 回ト < 回ト -

We denote the density of the Wishart distribution as

$$w(\mathbf{A} \mid \mathbf{\Sigma}, n) = \frac{\left(\det(\mathbf{A})\right)^{\frac{n-p-1}{2}} \exp\left(-\frac{1}{2} \operatorname{tr}\left(\mathbf{\Sigma}^{-1}\mathbf{A}\right)\right)}{2^{\frac{np}{2}} \left(\det(\mathbf{\Sigma})\right)^{\frac{n}{2}} \Gamma_{p}\left(\frac{n}{2}\right)}$$

and the associated distribution will be termed

$$\mathbf{A} \sim \mathcal{W}(\mathbf{\Sigma}, n).$$

If n < p, then **A** does not have a density, but its distribution is nevertheless defined, and we shall refer to it as $\mathcal{W}(\mathbf{\Sigma}, n)$.

Corollary 3

Let $\mathbf{x}_1, \ldots, \mathbf{x}_N$ be independently distributed, each according to $\mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where N > p. Then the distribution of $\mathbf{S} = \frac{1}{n} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}$ is $\mathcal{W}(\frac{1}{n}\boldsymbol{\Sigma}, n)$.

イヨト イヨト

3 The Generalized Variance

- 4 Distribution of the Set of Correlation Coefficients
- 5 The Inverted Wishart Distribution

A B A A B A

The Characteristic Function of the Wishart Distribution

Lemma 2

Given **B** positive semidefinite and **A** positive definite, there exists a non-singular matrix **F** such that $\mathbf{F}^{\top}\mathbf{BF} = \mathbf{D}$ and $\mathbf{F}^{\top}\mathbf{AF} = \mathbf{I}$, where **D** is diagonal.

Lemma 3

The characteristic function of chi-square distribution with the degree of freedom n is

$$\phi(t)=(1-2\mathrm{i}t)^{-\frac{n}{2}}.$$

• • = • • = •

The Characteristic Function of the Wishart Distribution

Theorem 4

If $\mathbf{z}_1, \ldots, \mathbf{z}_n$ are independent, each with distribution $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$, then the characteristic function of $a_{11}, \ldots, a_{pp}, 2a_{12}, \ldots, 2a_{p-1,p}$, where a_{ij} is the (i, j)-th element of

$$\mathbf{A} = \sum_{\alpha=1}^{n} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$$

is given by

$$\mathbb{E}\left[\exp(\mathrm{i}\operatorname{tr}(\mathbf{A}\mathbf{\Theta}))
ight] = (\det(\mathbf{I} - 2\mathrm{i}\mathbf{\Theta}\mathbf{\Sigma}))^{-rac{n}{2}}$$

MATH 620156

・ 回 ト ・ ヨ ト ・ ヨ ト

If $\mathbf{A}_1, \ldots, \mathbf{A}_q$ are independently distributed with $\mathbf{A}_i \sim \mathcal{W}(\mathbf{\Sigma}, n_i)$ for $i = 1, \ldots, q$, then

$$\mathbf{A} = \sum_{i=1}^{q} \mathbf{A}_i \sim \mathcal{W}\left(\mathbf{\Sigma}, \sum_{i=1}^{q} n_i\right).$$

If p = 1 and $\Sigma = 1$, then $W(\Sigma, n)$ is a χ^2 -distribution with n degrees of freedom.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We shall frequently make the transformation

$$\mathbf{A} = \mathbf{C}\mathbf{B}\mathbf{C}^{-1},$$

where $\mathbf{C} \in \mathbb{R}^{p \times p}$ is non-singular.

If the random matrix **A** is distributed according to $\mathcal{W}(\mathbf{\Sigma}, n)$, then **B** is distributed according to $\mathcal{W}(\mathbf{\Phi}, n)$ where

$$\mathbf{\Phi} = \mathbf{C}^{-1} \mathbf{\Sigma} \big(\mathbf{C}^\top \big)^{-1}.$$

Let **A** and **\Sigma** be partitioned into *q* and *p* - *q* rows and columns,

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}, \qquad \mathbf{\Sigma} = \begin{bmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{bmatrix}$$

If **A** is distributed according to $\mathcal{W}(\mathbf{\Sigma}, n)$, then **A**₁₁ is distributed according to $\mathcal{W}(\mathbf{\Sigma}_{11}, n)$.

イロト 不得 トイヨト イヨト 二日

Let **A** and **\Sigma** be partitioned into p_1, \ldots, p_q rows and p_1, \ldots, p_q columns as

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \cdots & \mathbf{A}_{1q} \\ \vdots & \ddots & \vdots \\ \mathbf{A}_{q1} & \cdots & \mathbf{A}_{qq} \end{bmatrix} \quad \text{and} \quad \mathbf{\Sigma} = \begin{bmatrix} \mathbf{\Sigma}_{11} & \cdots & \mathbf{\Sigma}_{1q} \\ \vdots & \ddots & \vdots \\ \mathbf{\Sigma}_{q1} & \cdots & \mathbf{\Sigma}_{qq} \end{bmatrix}$$

If $\Sigma = \mathbf{0}$ for $i \neq j$ and if $\mathbf{A} \sim \mathcal{W}(\Sigma, n)$, then $\mathbf{A}_{11}, \ldots, \mathbf{A}_{qq}$ are independently distributed and $\mathbf{A}_{jj} \sim \mathcal{W}(\Sigma_{jj}, n)$ for $j = 1, \ldots, q$.

(日)

Conditional Distributions

Let **A** and **\Sigma** be partitioned into q and p - q rows and columns as

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix} \qquad \text{and} \qquad \mathbf{\Sigma} = \begin{bmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{bmatrix}.$$

If **A** is distributed according to $\mathcal{W}(\mathbf{\Sigma}, n)$, then the distribution of

$$\mathbf{A}_{11.2} = \mathbf{A}_{11} - \mathbf{A}_{12}\mathbf{A}_{22}^{-1}\mathbf{A}_{21}$$

is distributed according to $W(\Sigma_{11.2}, n - p + q)$, where $\Sigma_{11.2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$ and $n \ge p - q$.

Follow the analysis in the section of partial correlation coefficient.

イロト 不得 トイラト イラト 一日

Properties of the Wishart Distribution

The Generalized Variance

- 4 Distribution of the Set of Correlation Coefficients
- 5 The Inverted Wishart Distribution

• • = • • = •

The multivariate analog of the variance of the univariate distribution:

- Covariance matrix Σ.
- 2 The scalar det(Σ), which is called the generalized variance.

The generalized variance of the sample of vectors $\mathbf{x}_1, \ldots, \mathbf{x}_N$ is

$$\det(\mathbf{S}) = \det\left(\frac{1}{N-1}\sum_{\alpha=1}^{N}(\mathbf{x}_{\alpha}-\bar{\mathbf{x}}_{\alpha})(\mathbf{x}_{\alpha}-\bar{\mathbf{x}}_{\alpha})^{\top}\right)$$

The Generalized Variance

Let

$$\mathbf{A} = \sum_{lpha=1}^{N} (\mathbf{x}_{lpha} - ar{\mathbf{x}}_{lpha}) (\mathbf{x}_{lpha} - ar{\mathbf{x}}_{lpha})^{ op} = (N-1) \mathbf{S}$$

and

$$\mathbf{X} - \bar{\mathbf{x}} \mathbf{1} = \begin{bmatrix} | & | \\ \mathbf{x}_1 - \bar{\mathbf{x}} & \cdots & \mathbf{x}_N - \bar{\mathbf{x}} \\ | & | \end{bmatrix} = \begin{bmatrix} \mathbf{v}_1^\top \\ \vdots \\ \mathbf{v}_p^\top \end{bmatrix} = \mathbf{V} \in \mathbb{R}^{p \times N}.$$

The sample generalized variance comes p rows of $\mathbf{V} = \mathbf{X} - \bar{\mathbf{x}}\mathbf{1}$ as p vectors $\mathbf{v}_1, \dots, \mathbf{v}_p$ in N-dimensional space.

We have $\det(\mathbf{S}) = \det(\mathbf{A})/(N-1)^p$.

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Consider that $\mathbf{x}_1, \ldots, \mathbf{x}_N$ are independently sampled from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then

$$\mathbf{A} = \sum_{\alpha=1}^{n} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$$

where z_1, \ldots, z_n are distributed independently according to $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$, and n = N - 1.

Let $\mathbf{z}_{\alpha} = \mathbf{C}\mathbf{y}_{\alpha}$ for $\alpha = 1, ..., n$, where $\mathbf{C}\mathbf{C}^{\top} = \mathbf{\Sigma}$. Then $\mathbf{y}_1, ..., \mathbf{y}_n$ are independently distributed, each with distribution $\mathcal{N}(\mathbf{0}, \mathbf{I})$. Let

$$\mathbf{B} = \sum_{\alpha=1}^{n} \mathbf{y}_{\alpha} \mathbf{y}_{\alpha}^{\top} = \sum_{\alpha=1}^{n} \mathbf{C}^{-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} (\mathbf{C}^{-1})^{\top} = \mathbf{C}^{-1} \mathbf{A} (\mathbf{C}^{-1})^{\top},$$

then $\det(A) = \det(C) \det(B) \det(C^{\top}) = \det(B) \det(\Sigma)$.

We have shown that $\det(\mathbf{B}) = \prod_{i=1}^{p} t_{ii}^2$, where $t_{11}^2, \ldots, t_{pp}^2$ are independent and t_{ii}^2 are distributed according to χ^2 -distribution with N - i degrees of freedom.

 $\mathsf{det}(\boldsymbol{S}) = \mathsf{det}(\boldsymbol{B})\,\mathsf{det}(\boldsymbol{\Sigma})/(\mathit{N}-1)^{\textit{p}}$ equals to

$$\frac{\det(\boldsymbol{\Sigma})\prod_{i=1}^{p}t_{ii}^{2}}{(N-1)^{p}},$$

where $t_{11}^2, \ldots, t_{pp}^2$ are independent and t_{ii}^2 are distributed according to χ^2 -distribution with N - i degrees of freedom.

イロト 不得 トイラト イラト 一日

Let det(**B**)/ $n^p = \prod_{i=1}^p V_i(n)$, where $V_1(n), \ldots, V_p(n)$ are independently distributed and $nV_i(n)$ is distributed according to χ^2 -distribution with n - p + i degrees of freedom.

Since $nV_i(n)$ is distributed as $\sum_{\alpha=1}^{n-p+i} w_{\alpha}^2$ where the w_{α} are independent, each with distribution $\mathcal{N}(0, 1)$, the central limit theorem states that

$$\frac{nV_i(n) - (n - p + i)}{\sqrt{2(n - p + i)}} = \sqrt{n} \cdot \frac{V_i(n) - 1 + \frac{p - 1}{n}}{\sqrt{2}\sqrt{1 - \frac{p - i}{n}}}$$

is asymptotically distributed according to $\mathcal{N}(0,1)$.

Then $\sqrt{n}(V_i(n) - 1)$ is asymptotically distributed according to $\mathcal{N}(0, 2)$.

・ロト ・ 理 ト ・ ヨト ・ ヨー ・ つへの

Theorem 5 [Serfling (1980), Section 3.3]

Let $\{\mathbf{u}(n)\}\$ be a sequence of *m*-component random vectors and \mathbf{b} a fixed vector such that

$$\lim_{n\to\infty}\sqrt{n}(\mathbf{u}(n)-\mathbf{b})\sim\mathcal{N}(\mathbf{0},\mathbf{T}).$$

Let $\mathbf{f}(\mathbf{u})$ be a vector-valued function of \mathbf{u} such that each component $f_j(\mathbf{u})$ has a nonzero differential at $\mathbf{u} = \mathbf{b}$, and let

$$\left. \frac{\partial f_j(\mathbf{u})}{\partial u_i} \right|_{\mathbf{u}=\mathbf{l}}$$

be the (i, j)-th component of $\Phi_{\mathbf{b}}$. Then $\sqrt{n}(\mathbf{f}(\mathbf{u}(n)) - f(\mathbf{b}))$ has the limiting distribution $\mathcal{N}(\mathbf{0}, \mathbf{\Phi}_{\mathbf{b}}^{\top} \mathbf{T} \mathbf{\Phi}_{\mathbf{b}})$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Let $\det(\mathbf{B})/n^p = f(\mathbf{u}) = \prod_{i=1}^p u_i$, $\mathbf{u}(n) = \begin{bmatrix} V_1(n) \\ \vdots \\ V_p(n) \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$ and $\mathbf{T} = 2\mathbf{I}$.

Then we have

$$\left. \frac{\partial f}{\partial u_i} \right|_{\mathbf{u}=\mathbf{b}} = 1, \quad \phi_{\mathbf{b}} = \mathbf{1} \quad \text{and} \quad \phi_{\mathbf{b}}^\top \mathbf{T} \phi_{\mathbf{b}} = 2p,$$

which implies

$$\sqrt{n}\left(\frac{\det(\mathbf{S})}{\det(\mathbf{\Sigma})}-1
ight)=\sqrt{n}\left(\frac{\det(\mathbf{B})}{n^p}-1
ight)$$

is asymptotically distributed according to $\mathcal{N}(0, 2p)$.

▲口> ▲圖> ▲注> ▲注> 三注

- 2 Properties of the Wishart Distribution
- 3 The Generalized Variance

Oistribution of the Set of Correlation Coefficients

5 The Inverted Wishart Distribution

(4) (日本)

Distribution of the Set of Correlation Coefficients

Recall that

$$r_{ij} = rac{a_{ij}}{\sqrt{a_{ii}}\sqrt{a_{jj}}}.$$

When the covariance matrix is diagonal, that is

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_{11} & 0 & \cdots & 0 \\ 0 & \sigma_{22} & \cdots & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{pp} \end{bmatrix} \text{ and } \det(\boldsymbol{\Sigma}) = \prod_{i=1}^{p} \sigma_{ii},$$

then the density of $\{r_{ij}: i < j, i, j = 1, ..., p\}$ is

$$\frac{\left(\Gamma\left(\frac{n}{2}\right)\right)^{p}\left(\det\left(\left[r_{ij}\right]_{ij}\right)\right)^{\frac{n-p-1}{2}}}{\Gamma_{p}\left(\frac{n}{2}\right)}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Distribution of the Set of Correlation Coefficients

Sketch of the proof:

We consider the transformation

$$\begin{cases} \mathsf{a}_{ij} = \sqrt{\mathsf{a}_{ii}} \sqrt{\mathsf{a}_{jj}} \mathsf{r}_{ij} & i < j, \\ \mathsf{a}_{ii} = \mathsf{a}_{ii} & i = j, \end{cases}$$

which is from $\{r_{ij} : i < j, i, j = 1, ..., p\} \cup \{a_{ii} : i = 1, ..., p\}$ to $\{a_{ij} : i < j, i, j = 1, ..., p\} \cup \{a_{ii} : i = 1, ..., p\}$.

2 The joint density of $\{r_{ij} : i < j, i, j = 1, \dots, p\} \cup \{a_{ii} : i = 1, \dots, p\}$ is

$$\frac{\left(\det\left(\left[r_{ij}\right]_{ij}\right)\right)^{\frac{n-p-1}{2}}}{\Gamma_{p}\left(\frac{n}{2}\right)}\frac{\prod_{i=1}^{p}a_{ii}^{\frac{n}{2}-1}\exp\left(-\frac{a_{ii}}{2\sigma_{ii}}\right)}{\prod_{i=1}^{p}2^{\frac{n}{2}}\sigma_{ii}^{\frac{n}{2}}}.$$

Integrate out a_{ii}.

イロト 不得下 イヨト イヨト 二日

- 2 Properties of the Wishart Distribution
- 3 The Generalized Variance
- 4 Distribution of the Set of Correlation Coefficients

• • = • • = •

The Inverted Wishart Distribution

If **A** has the distribution $\mathcal{W}(\mathbf{\Sigma}, m)$, then $\mathbf{B} = \mathbf{A}^{-1}$ has the density is

$$w^{-1}(\mathbf{B} \mid \mathbf{\Psi}, m) = rac{(\det(\mathbf{\Psi}))^{rac{m}{2}} (\det(\mathbf{B}))^{-rac{m+p+1}{2}} \exp\left(-rac{1}{2} \mathrm{tr}\left(\mathbf{\Psi}\mathbf{B}^{-1}
ight)
ight)}{2^{rac{mp}{2}} \Gamma_p\left(rac{m}{2}
ight)}.$$

for **B** positive definite and 0 elsewhere, where $\Psi = \mathbf{\Sigma}^{-1}$.

- We call B has the inverted Wishart distribution with m degrees of freedom and denote B ~ W⁻¹(Ψ, m).
- 2 We call Ψ the precision matrix or concentration matrix.
- **3** The derivation of $w^{-1}(\Psi, m)$ are based on the determinant for Jacobian of transformation $\mathbf{A} = \mathbf{B}^{-1}$ is $(\det(\mathbf{B}))^{-(p+1)}$.

The Inverted Wishart Distribution

If the posterior distribution $p(\theta \mid \mathbf{x})$ is in the same probability distribution family as the prior probability distribution $p(\theta)$, the prior and posterior are then called conjugate distributions, and the prior is called a conjugate prior.

Theorem 6

If **A** has the distribution $\mathcal{W}(\Sigma, n)$ and Σ has the a prior distribution $\mathcal{W}^{-1}(\Psi, m)$, then the conditional distribution of Σ given **A** is the inverted Wishart distribution $\mathcal{W}^{-1}(\mathbf{A} + \Psi, n + m)$.

Corollary 4

If $n\mathbf{S}$ has the distribution $\mathcal{W}(\mathbf{\Sigma}, n)$ and $\mathbf{\Sigma}$ has the a prior distribution $\mathcal{W}^{-1}(\mathbf{\Psi}, m)$, then the conditional distribution of $\mathbf{\Sigma}$ given \mathbf{S} is the inverted Wishart distribution $\mathcal{W}^{-1}(n\mathbf{S} + \mathbf{\Psi}, n + m)$.

イロト イヨト イヨト イヨト

The Inverted Wishart Distribution

Theorem 7

Let x_1, \ldots, x_N be observations from $\mathcal{N}(\mu, \Sigma)$. Suppose μ and Σ have the a prior density

$$n\left(\mu \mid \nu, \frac{\mathbf{\Sigma}}{K}\right) \times w^{-1}(\mathbf{\Sigma} \mid \mathbf{\Psi}, m),$$

where n = N - 1. Then the posterior density of μ and Σ given

$$ar{\mathbf{x}} = rac{1}{N}\sum_{lpha=1}^{N}\mathbf{x}_{lpha} \quad ext{and} \quad \mathbf{S} = rac{1}{N-1}\sum_{lpha=1}^{N}(\mathbf{x}_{lpha} - ar{\mathbf{x}})(\mathbf{x}_{lpha} - ar{\mathbf{x}})^{ op}$$

is

$$n\left(\mu \mid \frac{N\bar{\mathbf{x}} + K\nu}{N + K}, \frac{\mathbf{\Sigma}}{N + K}\right) \cdot w^{-1}\left(\mathbf{\Sigma} \mid \mathbf{\Psi} + n\mathbf{S} + \frac{NK(\bar{\mathbf{x}} - \nu)(\bar{\mathbf{x}} - \nu)^{\top}}{N + K}, N + m\right).$$

< □ > < □ > < □ > < □ > < □ > < □ >