Multivariate Statistics

Lecture 09

Fudan University

Outline

(1) The Distribution of the Sample Correlation Coefficient

Outline

(1) The Distribution of the Sample Correlation Coefficient
(2) Tests for the Hypothesis of Lack of Correlation

Outline

(1) The Distribution of the Sample Correlation Coefficient
(2) Tests for the Hypothesis of Lack of Correlation
(3) The Asymptotic Distribution of Sample Correlation

Outline

(1) The Distribution of the Sample Correlation Coefficient
(2) Tests for the Hypothesis of Lack of Correlation
(3) The Asymptotic Distribution of Sample Correlation
4) Partial Correlation Coefficients

Outline

(1) The Distribution of the Sample Correlation Coefficient
(2) Tests for the Hypothesis of Lack of Correlation

3 The Asymptotic Distribution of Sample Correlation

4) Partial Correlation Coefficients

The Distribution of the Sample Correlation Coefficient

If one has a sample (of p-component vectors) $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ from a normal distribution, the maximum likelihood estimator of the correlation between the i-th component and the j-th component is

$$
r_{i j}=\frac{\sum_{\alpha=1}^{N}\left(x_{i \alpha}-\bar{x}_{i}\right)\left(x_{j \alpha}-\bar{x}_{j}\right)}{\sqrt{\sum_{\alpha=1}^{N}\left(x_{i \alpha}-\bar{x}_{i}\right)^{2}} \sqrt{\sum_{\alpha=1}^{N}\left(x_{j \alpha}-\bar{x}_{j}\right)^{2}}}
$$

where $x_{i \alpha}$ is the i-th component of \mathbf{x}_{α} and

$$
\bar{x}_{i}=\frac{1}{N} \sum_{\alpha=1}^{N} x_{i \alpha}
$$

We shall treat that $r_{i j}$ and need only consider the joint distribution of $\left(x_{i 1}, x_{j 1}\right),\left(x_{i 2}, x_{j 2}\right), \ldots,\left(x_{i N}, x_{j N}\right)$.

The Distribution of the Sample Correlation Coefficient

We reformulate the problems to be considered a bivariate normal distribution. Let $\mathbf{x}_{1}^{*}, \ldots, \mathbf{x}_{N}^{*}$ be observation from

$$
\mathcal{N}\left(\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right],\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{1} \sigma_{2} \rho \\
\sigma_{1} \sigma_{2} \rho & \sigma_{2}^{2}
\end{array}\right]\right), \quad \text { where }-1<\rho<1
$$

We shall consider the sample correlation coefficient

$$
r=\frac{a_{12}}{\sqrt{a_{11}} \sqrt{a_{22}}}
$$

where

$$
a_{i j}=\sum_{\alpha=1}^{N}\left(x_{i \alpha}-\bar{x}_{i}\right)\left(x_{j \alpha}-\bar{x}_{j}\right), \quad \bar{x}_{i}=\frac{1}{N} \sum_{\alpha=1}^{N} x_{i \alpha}
$$

and $x_{i \alpha}$ is the i-th component of \mathbf{x}_{α}^{*}.

The Distribution of the Sample Correlation Coefficient

Let $n=N-1$. We see that $a_{i j}$ are distributed like

$$
a_{i j}=\sum_{\alpha=1}^{n} z_{i \alpha} z_{j \alpha}
$$

where

$$
\left[\begin{array}{l}
z_{1 \alpha} \\
z_{2 \alpha}
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{1} \sigma_{2} \rho \\
\sigma_{1} \sigma_{2} \rho & \sigma_{2}^{2}
\end{array}\right]\right) .
$$

and the pair $\left(z_{12}, z_{22}\right), \ldots,\left(z_{1 N}, z_{2 N}\right)$ are independent.

The Distribution of the Sample Correlation Coefficient

Define the n-component vectors $\mathbf{v}_{i}=\left[z_{i 1}, \ldots, z_{i n}\right]^{\top}$ for $i=1,2$.
(1) The correlation coefficient between \mathbf{v}_{1} and \mathbf{v}_{2} is the cosine of the angle, say θ, between \mathbf{v}_{1} and \mathbf{v}_{2}, that is

$$
\cos \theta=\frac{\mathbf{v}_{1}^{\top} \mathbf{v}_{2}}{\left\|\mathbf{v}_{1}\right\|_{2}\left\|\mathbf{v}_{2}\right\|_{2}}
$$

(2) If we let $b=\mathbf{v}_{2}^{\top} \mathbf{v}_{1} /\left(\mathbf{v}_{1}^{\top} \mathbf{v}_{1}\right)$ then $\mathbf{v}_{2}-b \mathbf{v}_{1}$ is orthogonal to \mathbf{v}_{1} and

$$
\cot \theta=\frac{b\left\|\mathbf{v}_{1}\right\|_{2}}{\left\|\mathbf{v}_{2}-b \mathbf{v}_{1}\right\|_{2}}
$$

(3) We shall show that $\cot \theta$ is proportional to a t-variable when $\rho=0$.

The Distribution of the Sample Correlation Coefficient

Theorem 1

If the pairs $\left(z_{11}, z_{21}\right), \ldots,\left(z_{1 n}, z_{2 n}\right)$ are independent and each pair are distributed according to

$$
\left[\begin{array}{l}
z_{1 \alpha} \\
z_{2 \alpha}
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{1} \sigma_{2} \rho \\
\sigma_{1} \sigma_{2} \rho & \sigma_{2}^{2}
\end{array}\right]\right), \quad \text { where } \alpha=1, \ldots, n
$$

then given $z_{11}, z_{12}, \ldots, z_{1 n}$, the conditional distributions of

$$
b=\frac{\sum_{\alpha=1}^{n} z_{2 \alpha} z_{1 \alpha}}{\sum_{i=1}^{n} z_{1 \alpha}^{2}} \quad \text { and } \quad \frac{u}{\sigma^{2}}=\sum_{\alpha=1}^{n} \frac{\left(z_{2 \alpha}-b z_{1 \alpha}\right)^{2}}{\sigma^{2}}
$$

are $\mathcal{N}\left(\beta, \sigma^{2} / c^{2}\right)$ and χ^{2}-distribution with $n-1$ degrees of freedom, respectively; and b and u are independent, where

$$
\beta=\frac{\rho \sigma_{2}}{\sigma_{1}}, \quad \sigma^{2}=\sigma_{2}^{2}\left(1-\rho^{2}\right) \quad \text { and } \quad c^{2}=\sum_{i=1}^{n} z_{1 \alpha}^{2}
$$

The Distribution of the Sample Correlation Coefficient

We can write

$$
\cot \theta=\frac{b\left\|\mathbf{v}_{1}\right\|_{2}}{\left\|\mathbf{v}_{2}-b \mathbf{v}_{1}\right\|_{2}}=\frac{c b / \sigma}{\sqrt{u / \sigma^{2}}}
$$

If $\rho=0$, then $\beta=0$, and $b \sim \mathcal{N}\left(0, \sigma^{2} / c^{2}\right)$, and

$$
\frac{c b / \sigma}{\sqrt{\frac{u / \sigma^{2}}{n-1}}} \sim \frac{\mathcal{N}(0,1)}{\sqrt{\frac{\chi^{2}(n-1)}{n-1}}}
$$

has a conditional t-distribution with $n-1$ degrees of freedom.

The Distribution of the Sample Correlation Coefficient

We require the following lemma.

Lemma 1

If $\mathbf{y}_{1}, \ldots, \mathbf{y}_{N}$ are independently distributed, if

$$
\mathbf{y}_{\alpha}=\left[\begin{array}{l}
\mathbf{y}_{\alpha}^{(1)} \\
\mathbf{y}_{\alpha}^{(2)}
\end{array}\right]
$$

has the density $f\left(\mathbf{y}_{\alpha}\right)$ and if the conditional density of $\mathbf{y}_{\alpha}^{(2)}$ given $\mathbf{y}_{\alpha}^{(1)}$ is $f\left(\mathbf{y}_{\alpha}^{(2)} \mid \mathbf{y}_{\alpha}^{(1)}\right)$ for $\alpha=1, \ldots, n$. Then in the conditional distribution of $\mathbf{y}_{1}^{(2)}, \ldots, \mathbf{y}_{N}^{(2)}$ given $\mathbf{y}_{1}^{(1)}, \ldots, \mathbf{y}_{N}^{(1)}$, the random vectors $\mathbf{y}_{1}^{(2)}, \ldots, \mathbf{y}_{N}^{(2)}$ are independent and the density of $\mathbf{y}_{\alpha}^{(2)}$ is $f\left(\mathbf{y}_{\alpha}^{(2)} \mid \mathbf{y}_{\alpha}^{(1)}\right)$.

The Distribution of the Sample Correlation Coefficient

We also use the following lemma with $x_{\alpha}=z_{2 \alpha}$ and matrix \mathbf{C} whose the first row is $\mathbf{v}_{1}^{\top} / c$, where $c=\left\|\mathbf{v}_{1}\right\|_{2}$.

Lemma 2

Suppose $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ are independent, where $\mathbf{x}_{\alpha} \sim \mathcal{N}_{p}\left(\boldsymbol{\mu}_{\alpha}, \boldsymbol{\Sigma}\right)$. Let $\mathbf{C} \in \mathbb{R}^{N \times N}$ be an orthogonal matrix, then

$$
\mathbf{y}_{\alpha}=\sum_{\gamma=1}^{N} c_{\alpha \gamma} \mathbf{x}_{\gamma} \sim \mathcal{N}_{p}\left(\boldsymbol{\nu}_{\alpha}, \boldsymbol{\Sigma}\right)
$$

where $\boldsymbol{\nu}_{\alpha}=\sum_{\gamma=1}^{N} c_{\alpha \gamma} \boldsymbol{\mu}_{\gamma}$ for $\alpha=1, \ldots, N$ and $\mathbf{y}_{1}, \ldots, \mathbf{y}_{N}$ are independent.

The Distribution of the Sample Correlation Coefficient

Theorem 2

if x and y are independently distributed, x having the distribution $\mathcal{N}(0,1)$ and y having the χ^{2}-distribution with m degrees of freedom, then

$$
t=\frac{x}{\sqrt{y / m}}
$$

has the density of t-distribution such that

$$
f(t ; m)=\frac{\Gamma\left(\frac{m+1}{2}\right)}{\sqrt{m \pi} \Gamma\left(\frac{m}{2}\right)}\left(1+\frac{t^{2}}{m}\right)^{-\frac{m+1}{2}}
$$

The Distribution of the Sample Correlation Coefficient

Recall that $a_{i j}=\sum_{\alpha=1}^{n} z_{i \alpha} z_{j \alpha}$ and $\mathbf{v}_{i}=\left[z_{i 1}, \ldots, z_{i n}\right]^{\top}$ for $i=1,2$, then

$$
\begin{aligned}
& b=\frac{\sum_{\alpha=1}^{n} z_{2 \alpha} z_{1 \alpha}}{\sum_{i=1}^{n} z_{1 \alpha}^{2}}=\frac{a_{12}}{a_{11}}, \quad c^{2}=\sum_{i=1}^{n} z_{1 \alpha}^{2}=a_{11} \\
& u=\sum_{\alpha=1}^{n}\left(z_{2 \alpha}-b z_{1 \alpha}\right)^{2}=\sum_{\alpha=1}^{n}\left(z_{2 \alpha}^{2}-b^{2} z_{1 \alpha}^{2}\right)=a_{22}-\frac{a_{12}^{2}}{a_{11}} .
\end{aligned}
$$

Hence, we can write the above conditional t-distributed random variable with $n-1$ degrees of freedom as

$$
\begin{aligned}
\frac{c b / \sigma}{\sqrt{\frac{u / \sigma^{2}}{n-1}}} & =\sqrt{n-1} \cdot \frac{c b}{\sqrt{u}} \\
& =\sqrt{n-1} \cdot \frac{a_{12} / \sqrt{a_{11} a_{22}}}{\sqrt{1-a_{12}^{2} /\left(a_{11} a_{22}\right)}} \\
& =\sqrt{n-1} \cdot \frac{r}{\sqrt{1-r^{2}}} .
\end{aligned}
$$

The Distribution of the Sample Correlation Coefficient

The conditional density of

$$
t=\frac{c b / \sigma}{\sqrt{\frac{u / \sigma^{2}}{n-1}}}=\sqrt{n-1} \cdot \frac{r}{\sqrt{1-r^{2}}}
$$

given \mathbf{v}_{1} is

$$
\frac{\Gamma\left(\frac{n}{2}\right)}{\sqrt{(n-1) \pi} \Gamma\left(\frac{n-1}{2}\right)}\left(1+\frac{t^{2}}{n-1}\right)^{-\frac{n}{2}} .
$$

Then the conditional density of r given \mathbf{v}_{1} is

$$
k_{N}(r)=\frac{\Gamma\left(\frac{N-1}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{N-2}{2}\right)}\left(1-r^{2}\right)^{\frac{N-4}{2}}, \quad \text { where } \quad N=n+1
$$

Note that $k_{N}(r)$ does not depend on \mathbf{v}_{1}.

Outline

(1) The Distribution of the Sample Correlation Coefficient

(2) Tests for the Hypothesis of Lack of Correlation
(3) The Asymptotic Distribution of Sample Correlation

4) Partial Correlation Coefficients

Tests for the Hypothesis of Lack of Correlation

Consider the hypothesis H : $\rho_{i j}=0$ for some particular pair (i, j).
(1) For testing H against alternatives $\rho_{i j}>0$, we reject H if $r_{i j}>r_{0}$ for some positive r_{0}. The probability of rejecting H when H is true is

$$
\int_{r_{0}}^{1} k_{N}(r) \mathrm{d} r .
$$

(2) For testing H against alternatives $r_{i j}<0$, we reject H if $r_{i j}<-r_{0}$.
(3) For testing H against alternatives $r_{i j} \neq 0$, we reject H if $r_{i j}>r_{1}$ or $r_{i j}<-r_{1}$ for some positive r_{1}. The probability of rejection when H is true is

$$
\int_{-1}^{-r_{1}} k_{N}(r) \mathrm{d} r+\int_{r_{1}}^{1} k_{N}(r) \mathrm{d} r
$$

Tests for the Hypothesis of Lack of Correlation

We have shown that

$$
\sqrt{N-2} \cdot \frac{r_{i j}}{\sqrt{1-r_{i j}^{2}}}
$$

has the t-distribution with $N-2$ degrees of freedom.

We can also use t-tables. For $\rho_{i j} \neq 0$, reject H if

$$
\sqrt{N-2} \cdot \frac{\left|r_{i j}\right|}{\sqrt{1-r_{i j}^{2}}}>t_{N-2}(\alpha)
$$

where $t_{N-2}(\alpha)$ is the two-tailed significance point of the t-statistic with $N-2$ degrees of freedom for significance level α.

The Distribution in the Case of $\rho \neq 0$

Conditional on \mathbf{v}_{1} held fixed, the random variables

$$
b=\frac{a_{12}}{a_{11}} \quad \text { and } \quad \frac{u}{\sigma^{2}}=\frac{a_{22}-a_{12}^{2} / a_{11}}{\sigma^{2}}
$$

which are distributed independently according to $\mathcal{N}\left(\beta, \sigma^{2} / c^{2}\right)$ and χ^{2}-distribution with $n-1$ degrees of freedom, respectively.

Theorem 3

The correlation coefficient in a sample of N from a bivariate normal distribution with correlation ρ is distributed with density

$$
\frac{2^{n-2}\left(1-\rho^{2}\right)^{\frac{n}{2}}\left(1-r^{2}\right)^{\frac{n-3}{2}}}{(n-2)!\pi} \sum_{\alpha=0}^{\infty} \frac{(2 \rho r)^{\alpha}}{\alpha!} \Gamma^{2}\left(\frac{n+\alpha}{2}\right)
$$

where $-1 \leq r \leq 1$ and $n=N-1$.

The Distribution in the Case of $\rho \neq 0$

It should be pointed out that any test based on r is invariant under transformations of location and scale, that is,

$$
x_{i \alpha}^{*}=b_{i} x_{i \alpha}+c_{i}
$$

for $b_{i} \neq 0$ and $i=1,2$.
Recall that

$$
r=\frac{a_{12}}{\sqrt{a_{11}} \sqrt{a_{22}}} \quad \text { and } \quad a_{i j}=\sum_{\alpha=1}^{N}\left(x_{i \alpha}-\bar{x}_{i}\right)\left(x_{j \alpha}-\bar{x}_{j}\right) .
$$

Test $\rho=\rho_{0}$ by the Likelihood Ratio Criterion

The likelihood ratio criterion:
(1) Let $L(\mathbf{x}, \boldsymbol{\theta})$ be the likelihood function of the observation \mathbf{x} and the parameter vector $\boldsymbol{\theta} \in \Omega$.
(2) Let a null hypothesis be defined by a proper subset ω of Ω, such that $\rho=\rho_{0}$. The likelihood ratio criterion is

$$
\lambda(\mathbf{x})=\frac{\sup _{\boldsymbol{\theta} \in \omega} L(\mathbf{x}, \boldsymbol{\theta})}{\sup _{\boldsymbol{\theta} \in \Omega} L(\mathbf{x}, \boldsymbol{\theta})}
$$

(3) The likelihood ratio test is the procedure of rejecting the null hypothesis when $\lambda(\mathbf{x})$ is less than a predetermined constant.

Test $\rho=\rho_{0}$ by the Likelihood Ratio Criterion

Let us consider the likelihood ratio test of the hypothesis that $\rho=\rho_{0}$ based on a sample $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ from the bivariate normal distribution

$$
\mathcal{N}\left(\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right],\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{1} \sigma_{2} \rho \\
\sigma_{1} \sigma_{2} \rho & \sigma_{2}^{2}
\end{array}\right]\right)
$$

The set Ω consists of $\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}$ and ρ such that

$$
\sigma_{1}>0, \quad \sigma_{2}>0 \quad \text { and }-1<\rho<1
$$

and the set ω is the subset for which $\rho=\rho_{0}$.
The likelihood ratio criterion is

$$
\frac{\sup _{\omega} L(\mathbf{x}, \boldsymbol{\theta})}{\sup _{\Omega} L(\mathbf{x}, \boldsymbol{\theta})}=\left(\frac{\left(1-\rho_{0}^{2}\right)\left(1-r^{2}\right)}{\left(1-\rho_{0} r\right)^{2}}\right)^{\frac{N}{2}}
$$

Test $\rho=\rho_{0}$ by the Likelihood Ratio Criterion

The likelihood ratio criterion is

$$
\frac{\sup _{\omega} L(\mathbf{x}, \boldsymbol{\theta})}{\sup _{\Omega} L(\mathbf{x}, \boldsymbol{\theta})}=\left(\frac{\left(1-\rho_{0}^{2}\right)\left(1-r^{2}\right)}{\left(1-\rho_{0} r\right)^{2}}\right)^{\frac{N}{2}}
$$

The likelihood ratio test is

$$
\frac{\left(1-\rho_{0}^{2}\right)\left(1-r^{2}\right)}{\left(1-\rho_{0} r\right)^{2}} \leq c
$$

where c is chosen by the prescribed significance level.

Test $\rho=\rho_{0}$ by the Likelihood Ratio Criterion

The critical region can be written equivalently as

$$
\left(\rho_{0}^{2} c-\rho_{0}^{2}+1\right) r^{2}-2 \rho_{0} c r+c-1+\rho_{0}^{2} \geq 0
$$

that is,

$$
r>\frac{\rho_{0} c+\left(1-\rho_{0}^{2}\right) \sqrt{1-c}}{\rho_{0}^{2} c-\rho_{0}^{2}+1} \quad \text { and } \quad r<\frac{\rho_{0} c-\left(1-\rho_{0}^{2}\right) \sqrt{1-c}}{\rho_{0}^{2} c-\rho_{0}^{2}+1}
$$

Thus the likelihood ratio test of $H: \rho=\rho_{0}$ against alternatives $\rho \neq \rho_{0}$ has a rejection region of the form $r>r_{1}$ and $r<r_{2}$ (not chosen so that the probability of each inequality is $\alpha / 2$ when H is true).

Outline

(1) The Distribution of the Sample Correlation Coefficient

(2) Tests for the Hypothesis of Lack of Correlation
(3) The Asymptotic Distribution of Sample Correlation

(4) Partial Correlation Coefficients

The Asymptotic Distribution of Sample Correlation

For a sample $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ from a normal distribution $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, we are interested in the sample correlation coefficient

$$
r(n)=\frac{a_{i j}(n)}{\sqrt{a_{i i}(n)} \sqrt{a_{j j}(n)}}
$$

where $n=N-1$,

$$
a_{i j}(n)=\sum_{\alpha=1}^{N}\left(x_{i \alpha}-\bar{x}_{i}\right)\left(x_{j \alpha}-\bar{x}_{j}\right) \sim \sum_{\alpha=1}^{n} z_{i \alpha} z_{j \alpha}
$$

with

$$
\left[\begin{array}{l}
z_{i \alpha} \\
z_{j \alpha}
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
\sigma_{i i} & \sigma_{i j} \\
\sigma_{j i} & \sigma_{j j}
\end{array}\right]\right) \quad \text { and } \quad \bar{x}_{i}=\frac{1}{N} \sum_{\alpha=1}^{N} x_{i \alpha} .
$$

The Asymptotic Distribution of Sample Correlation

We can also write

$$
r(n)=\frac{c_{i j}(n)}{\sqrt{c_{i i}(n)} \sqrt{c_{j j}(n)}},
$$

with

$$
c_{i i}(n)=\frac{a_{i i}(n)}{\sigma_{i i}}, \quad c_{i j}(n)=\frac{a_{i j}(n)}{\sqrt{\sigma_{i i}} \sqrt{\sigma_{j j}}} \quad \text { and } \quad c_{j j}(n)=\frac{a_{i i}(n)}{\sigma_{j j}} .
$$

Then we have

$$
c_{i j}(n)=\sum_{\alpha=1}^{n} z_{i \alpha}^{*} z_{j \alpha}^{*}
$$

with

$$
\left[\begin{array}{c}
z_{i \alpha}^{*} \\
z_{j \alpha}^{*}
\end{array}\right]=\left[\begin{array}{c}
\frac{z_{i \alpha}}{\sqrt{\sigma_{i j}}} \\
\frac{z_{j}}{\sqrt{\sigma_{j j}}}
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right]\right) \quad \text { and } \quad \rho=\frac{\sigma_{i j}}{\sqrt{\sigma_{j j}} \sqrt{\sigma_{j j}}} .
$$

The Asymptotic Distribution of Sample Correlation

Apply the following theorem with $\mathbf{A}(n)=\mathbf{C}(n)$ and $\boldsymbol{\Sigma}=\left[\begin{array}{ll}1 & \rho \\ \rho & 1\end{array}\right]$.

Theorem 4

Let

$$
\mathbf{A}(n)=\sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}_{N}\right)\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}_{N}\right)^{\top}
$$

where $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ are independently distributed according to $\mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $n=N-1$. Then the limiting distribution of

$$
\mathbf{B}(n)=\frac{1}{\sqrt{n}}(\mathbf{A}(n)-n \boldsymbol{\Sigma})
$$

is normal with mean $\mathbf{0}$ and covariance $\mathbb{E}\left[b_{i j}(n) b_{k l}(n)\right]=\sigma_{i k} \sigma_{j l}+\sigma_{i l} \sigma_{j k}$.

The Asymptotic Distribution of Sample Correlation

Let

$$
\mathbf{u}(n)=\frac{1}{n}\left[\begin{array}{l}
c_{i i}(n) \\
c_{j j}(n) \\
c_{i j}(n)
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
1 \\
\rho
\end{array}\right]
$$

The vector

$$
\sqrt{n}(\mathbf{u}(n)-\mathbf{b})=\frac{1}{\sqrt{n}}\left(\left[\begin{array}{l}
c_{i i}(n) \\
c_{j j}(n) \\
c_{i j}(n)
\end{array}\right]-n \mathbf{b}\right)
$$

has a limiting normal distribution with mean $\mathbf{0}$ and covariance matrix

$$
\left[\begin{array}{ccc}
2 & 2 \rho^{2} & 2 \rho \\
2 \rho^{2} & 2 & 2 \rho \\
2 \rho & 2 \rho & 1+\rho^{2}
\end{array}\right]
$$

The Asymptotic Distribution of Sample Correlation

The sample correlation coefficient can be written as $r=\frac{山_{3}}{\sqrt{山_{1}} \sqrt{u_{2}}}$.

Theorem 5 [Serfling (1980), Section 3.3]

Let $\{\mathbf{u}(n)\}$ be a sequence of m-component random vectors and \mathbf{b} a fixed vector such that

$$
\lim _{n \rightarrow \infty} \sqrt{n}(\mathbf{u}(n)-\mathbf{b}) \sim \mathcal{N}(\mathbf{0}, \mathbf{T})
$$

Let $\mathbf{f}(\mathbf{u})$ be a vector-valued function of \mathbf{u} such that each component $f_{j}(\mathbf{u})$ has a nonzero differential at $\mathbf{u}=\mathbf{b}$, and let

$$
\left.\frac{\partial f_{j}(\mathbf{u})}{\partial u_{i}}\right|_{\mathbf{u}=\mathbf{b}}
$$

be the (i, j)-th component of $\boldsymbol{\Phi}_{\mathbf{b}}$. Then $\sqrt{n}(\mathbf{f}(\mathbf{u}(n))-f(\mathbf{b}))$ has the limiting distribution $\mathcal{N}\left(\mathbf{0}, \boldsymbol{\Phi}_{\mathbf{b}}^{\top} \mathbf{T} \boldsymbol{\Phi}_{\mathbf{b}}\right)$.

The Asymptotic Distribution of Sample Correlation

Applying Theorem 5 with $r=f(\mathbf{u})=u_{3} u_{1}^{-\frac{1}{2}} u_{2}^{-\frac{1}{2}}$, we have $f(\mathbf{b})=\rho$ and

$$
\boldsymbol{\Phi}_{\mathbf{b}}=\left[\begin{array}{c}
\left.\frac{\partial r}{\partial u_{1}}\right|_{\mathbf{u}=\mathbf{b}} \\
\left.\frac{\partial r}{\partial u_{2}}\right|_{\mathbf{u}=\mathbf{b}} \\
\left.\frac{\partial r}{\partial u_{3}}\right|_{\mathbf{u}=\mathbf{b}}
\end{array}\right]=\left[\begin{array}{c}
-\left.\frac{1}{2} u_{3} u_{1}^{-\frac{3}{2}} u_{2}^{-\frac{1}{2}}\right|_{\mathbf{u}=\mathbf{b}} \\
-\left.\frac{1}{2} u_{3} u_{1}^{-\frac{1}{2}} u_{2}^{-\frac{3}{2}}\right|_{\mathbf{u}=\mathbf{b}} \\
\left.u_{1}^{-\frac{1}{2}} u_{2}^{-\frac{1}{2}}\right|_{\mathbf{u}=\mathbf{b}}
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \rho \\
-\frac{1}{2} \rho \\
1
\end{array}\right] .
$$

Thus, the covariance of the limiting distribution of $\sqrt{n}(r(n)-\rho)$ is

$$
\left[\begin{array}{lll}
-\frac{1}{2} \rho & -\frac{1}{2} \rho & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & 2 \rho^{2} & 2 \rho \\
2 \rho^{2} & 2 & 2 \rho \\
2 \rho & 2 \rho & 1+\rho^{2}
\end{array}\right]\left[\begin{array}{c}
-\frac{1}{2} \rho \\
-\frac{1}{2} \rho \\
1
\end{array}\right]=\left(1-\rho^{2}\right)^{2}
$$

and we have $\lim _{n \rightarrow \infty} \frac{\sqrt{n}(r(n)-\rho)}{1-\rho^{2}} \sim \mathcal{N}(0,1)$.

The Asymptotic Distribution of Sample Correlation

If $f(x)$ is differentiable at $x=\rho$ with non-zero differential, then

$$
\sqrt{n}(f(r)-f(\rho))
$$

is asymptotically normally distributed with mean zero and variance

$$
\left(\left.\frac{\partial f}{\partial x}\right|_{x=\rho}\right)^{2}\left(1-\rho^{2}\right)^{2}
$$

Theorem 6 [Fisher's z]

Let

$$
z=\frac{1}{2} \log \frac{1+r}{1-r} \quad \text { and } \quad \zeta=\frac{1}{2} \log \frac{1+\rho}{1-\rho}
$$

where r is the correlation coefficient of a sample of $N=n+1$ from a bivariate normal distribution with correlation ρ. Then $\sqrt{n}(z-\zeta)$ has a limiting normal distribution with mean 0 and variance 1.

The Asymptotic Distribution of Sample Correlation

Fisher's z approaches to normality much more rapid than for r. We have

$$
\mathbb{E}[z] \simeq \zeta+\frac{\rho}{2 n} \quad \text { and } \quad \mathbb{E}\left[z-\zeta-\frac{\rho}{2 n}\right]^{2} \simeq \frac{1}{n-2}
$$

See "Hotelling, H. (1953). New light on the correlation coefficient and its transforms. Journal of the Royal Statistical Society. Series B (Methodological), 15(2), 193-232."

We wish to test the hypothesis $\rho=\rho_{0}$ on the basis of a sample of N against the alternatives $\rho \neq \rho_{0}$.
(1) We compute r and $z=\frac{1}{2} \log \frac{1+r}{1-r}$.
(2) Let $\zeta_{0}=\frac{1}{2} \log \frac{1+\rho_{0}}{1-\rho_{0}}$.
(3) Then a region of rejection at the 5% significance interval is

$$
\sqrt{N-3}\left|z-\zeta_{0}-\frac{\rho_{0}}{2(N-1)}\right|>1.96 .
$$

Outline

(1) The Distribution of the Sample Correlation Coefficient

(2) Tests for the Hypothesis of Lack of Correlation
(3) The Asymptotic Distribution of Sample Correlation
(4) Partial Correlation Coefficients

Partial Correlation Coefficients

Consider the normal distribution $\mathbf{x} \sim \mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where

$$
\mathbf{x}=\left[\begin{array}{l}
\mathbf{x}^{(1)} \\
\mathbf{x}^{(2)}
\end{array}\right], \quad \boldsymbol{\mu}=\left[\begin{array}{l}
\boldsymbol{\mu}^{(1)} \\
\boldsymbol{\mu}^{(2)}
\end{array}\right] \quad \text { and } \quad \boldsymbol{\Sigma}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right]
$$

then the conditional distribution of $\mathbf{x}^{(1)}$ given $\mathbf{x}^{(2)}$ is

$$
\mathbf{x}^{(1)} \mid \mathbf{x}^{(2)} \sim \mathcal{N}\left(\boldsymbol{\mu}^{(1)}+\mathbf{B}\left(\mathbf{x}^{(2)}-\boldsymbol{\mu}^{(2)}\right), \boldsymbol{\Sigma}_{11.2}\right)
$$

where

$$
\mathbf{B}=\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \quad \text { and } \quad \boldsymbol{\Sigma}_{11.2}=\boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}
$$

Partial Correlation Coefficient

The partial correlations of $\mathbf{x}^{(1)}$ given $\mathbf{x}^{(2)}$ are the correlations calculated in the usual way from $\boldsymbol{\Sigma}_{11.2}$.

Suppose $\mathbf{x}^{(1)}$ has q components and let

$$
\boldsymbol{\Sigma}_{11.2}=\left[\begin{array}{cccc}
\sigma_{11 \cdot q+1, \ldots, p} & \sigma_{12 \cdot q+1, \ldots, p} & \ldots & \sigma_{1 q \cdot q+1, \ldots, p} \\
\sigma_{21 \cdot q+1, \ldots, p} & \sigma_{22 \cdot q+1, \ldots, p} & \ldots & \sigma_{2 q \cdot q+1, \ldots, p} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{q 1 \cdot q+1, \ldots, p} & \sigma_{q 2 \cdot q+1, \ldots, p} & \ldots & \sigma_{q q \cdot q+1, \ldots, p}
\end{array}\right] \in \mathbb{R}^{q \times q}
$$

We define

$$
\rho_{i j \cdot q+1, \ldots, p}=\frac{\sigma_{i j \cdot q+1, \ldots, p}}{\sqrt{\sigma_{i i} \cdot q+1, \ldots, p} \sqrt{\sigma_{j j} \cdot q+1, \ldots, p}}
$$

as the partial correlation between x_{i} and x_{j} holding x_{q+1}, \ldots, x_{p} fixed.

Partial Correlation Coefficient

Corollary 1

If on the basis of a given sample $\hat{\theta}_{1}, \ldots, \hat{\theta}_{m}$ are maximum likelihood estimators of the parameters $\theta_{1}, \ldots, \theta_{m}$ of a distribution, then $\phi_{1}\left(\hat{\theta}_{1}, \ldots, \hat{\theta}_{m}\right), \ldots, \phi_{m}\left(\hat{\theta}_{1}, \ldots, \hat{\theta}_{m}\right)$ are maximum likelihood estimator of $\phi_{1}\left(\theta_{1}, \ldots, \theta_{m}\right), \ldots, \phi_{m}\left(\theta_{1}, \ldots, \theta_{m}\right)$ if the transformation from $\theta_{1}, \ldots, \theta_{m}$ to $\phi_{1}, \ldots, \phi_{m}$ is one-to-one. If the estimators of $\theta_{1}, \ldots, \theta_{m}$ are unique, then the estimators of $\theta_{1}, \ldots, \theta_{m}$ are unique.

The Estimation of Partial Correlation Coefficient

Theorem 6

Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ be a sample from $\mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and partition the variables as

$$
\mathbf{x}=\left[\begin{array}{l}
\mathbf{x}^{(1)} \\
\mathbf{x}^{(2)}
\end{array}\right], \quad \boldsymbol{\mu}=\left[\begin{array}{l}
\boldsymbol{\mu}^{(1)} \\
\boldsymbol{\mu}^{(2)}
\end{array}\right] \quad \text { and } \quad \boldsymbol{\Sigma}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right] .
$$

Define $\mathbf{B}=\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}$,

$$
\overline{\mathbf{x}}=\left[\begin{array}{l}
\overline{\mathbf{x}}^{(1)} \\
\overline{\mathbf{x}}^{(2)}
\end{array}\right]=\frac{1}{N} \sum_{\alpha=1}^{N}\left[\begin{array}{l}
\mathbf{x}_{\alpha}^{(1)} \\
\mathbf{x}_{\alpha}^{(2)}
\end{array}\right] \quad \text { and } \quad \mathbf{A}=\left[\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{A}_{21} & \mathbf{A}_{22}
\end{array}\right]=\sum_{\alpha=1}^{N}\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{\alpha}-\overline{\mathbf{x}}\right)^{\top} .
$$

Then the maximum likelihood estimators of $\boldsymbol{\Sigma}_{11.2}$ is

$$
\hat{\boldsymbol{\Sigma}}_{11.2}=\frac{1}{N}\left(\mathbf{A}_{11}-\mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{21}\right) .
$$

The Estimation of Partial Correlation Coefficient

Then the maximum likelihood estimators of the partial correlation coefficients are

$$
\hat{\rho}_{i j \cdot q+1, \ldots, p}=\frac{\hat{\sigma}_{i j \cdot q+1, \ldots, p}}{\sqrt{\hat{\sigma}_{i i \cdot} \cdot q+1, \ldots, p} \sqrt{\hat{\sigma}_{j j \cdot} \cdot q+1, \ldots, p}},
$$

where $\hat{\sigma}_{i j \cdot q+1, \ldots, p}$ is the (i, j)-th element of $\hat{\boldsymbol{\Sigma}}_{11.2}$.
We can also write

$$
\hat{\rho}_{i j \cdot q+1, \ldots, p}=\frac{a_{i j \cdot q+1, \ldots, p}}{\sqrt{a_{i i \cdot q+1, \ldots, p}} \sqrt{a_{j j \cdot q+1, \ldots, p}}}
$$

where $a_{i j \cdot q+1, \ldots, p}$ is the (i, j)-th element of $\mathbf{A}_{11.2}=\mathbf{A}_{11}-\mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{21}$.

The Distribution of Partial Correlation Coefficient

To obtain the distribution of $\rho_{i j}$ we showed that \mathbf{A} was distributed as

$$
\mathbf{A}=\sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}
$$

where \mathbf{z}_{α} are distributed independently according to $\mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$.
Here we want to show that $\mathbf{A}_{11.2}$ is distributed as

$$
\mathbf{A}_{11.2}=\sum_{\alpha=1}^{N-1-(p-q)} \mathbf{u}_{\alpha} \mathbf{u}_{\alpha}^{\top}
$$

where \mathbf{u}_{α} are distributed independently according to $\mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{11.2}\right)$.

The Distribution of Partial Correlation Coefficient

Theorem 7

Suppose $\mathbf{y}_{1}, \ldots, \mathbf{y}_{m}$ are independent with \mathbf{y}_{α} distributed according to $\mathcal{N}\left(\boldsymbol{\Gamma} \mathbf{w}_{\alpha}, \boldsymbol{\Phi}\right)$, where \mathbf{w}_{α} is an r-component vector. Let $\mathbf{H}=\sum_{\alpha=1}^{m} \mathbf{w}_{\alpha} \mathbf{w}_{\alpha}^{\top}$ assumed non-singular, $\mathbf{G}=\sum_{\alpha=1}^{m} \mathbf{y}_{\alpha} \mathbf{w}_{\alpha}^{\top} \mathbf{H}^{-1}$ and

$$
\mathbf{C}=\sum_{\alpha=1}^{m}\left(\mathbf{y}_{\alpha}-\mathbf{G} \mathbf{w}_{\alpha}\right)\left(\mathbf{y}_{\alpha}-\mathbf{G} \mathbf{w}_{\alpha}\right)^{\top}=\sum_{\alpha=1}^{m} \mathbf{y}_{\alpha} \mathbf{y}_{\alpha}^{\top}-\mathbf{G} \mathbf{H} \mathbf{G}^{\top} .
$$

Then \mathbf{C} is distributed as $\sum_{\alpha=1}^{m-r} \mathbf{u}_{\alpha} \mathbf{u}_{\alpha}^{\top}$ and where $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m-r}$ are independently distributed according to $\mathcal{N}(\mathbf{0}, \boldsymbol{\Phi})$ independently of \mathbf{G}.

Corollary 2

If $\Gamma=\mathbf{0}$, the matrix $\mathbf{G H G}^{\top}$ defined in Theorem 7 is distributed as $\sum_{\alpha=m-r+1}^{m} \mathbf{u}_{\alpha} \mathbf{u}_{\alpha}^{\top}$, where $\mathbf{u}_{m-r+1}, \ldots, \mathbf{u}_{m}$ are independently distributed, each according to $\mathcal{N}(\mathbf{0}, \boldsymbol{\Phi})$.

The Distribution of Partial Correlation Coefficient

We can write $\mathbf{A}=\sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$, where $\mathbf{z}_{1}, \ldots, \mathbf{z}_{N-1}$ are independent, each with distribution $\mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$.

Let \mathbf{z}_{α} be partitioned into two subvectors of q and $p-q$ components, that is $\mathbf{z}_{\alpha}^{\top}=\left[\left(\mathbf{z}_{\alpha}^{(1)}\right)^{\top},\left(\mathbf{z}_{\alpha}^{(2)}\right)^{\top}\right]$. Then $\mathbf{A}_{i j}=\sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha}^{(i)}\left(\mathbf{z}_{\alpha}^{(j)}\right)^{\top}$.

Given $\mathbf{z}_{1}^{(2)}, \ldots, \mathbf{z}_{N-1}^{(2)}$, the random vectors $\mathbf{z}_{1}^{(1)}, \ldots, \mathbf{z}_{N-1}^{(1)}$ are independently distributed, with $\mathbf{z}_{\alpha}^{(1)} \sim \mathcal{N}\left(\mathbf{B z}_{\alpha}^{(2)}, \boldsymbol{\Sigma}_{11.2}\right)$, where $\mathbf{B}=\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1}$ and $\boldsymbol{\Sigma}_{11.2}=\boldsymbol{\Sigma}_{11}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}$.

Now we apply Theorem 7 with $\mathbf{y}_{\alpha}=\mathbf{z}_{\alpha}^{(1)}, \mathbf{w}_{\alpha}=\mathbf{z}_{\alpha}^{(2)}, m=N-1, r=p-q$, $\boldsymbol{\Gamma}=\mathbf{B}, \boldsymbol{\Phi}=\boldsymbol{\Sigma}_{11.2}, \sum_{\alpha=1}^{m} \mathbf{y}_{\alpha} \mathbf{y}_{\alpha}^{\top}=\mathbf{A}_{11}, \mathbf{G}=\mathbf{A}_{12} \mathbf{A}_{22}^{-1}, \mathbf{H}=\mathbf{A}_{22}$, then the conditional distribution of

$$
\mathbf{A}_{11.2}=\mathbf{A}_{11}-\left(\mathbf{A}_{12} \mathbf{A}_{22}^{-1}\right) \mathbf{A}_{22}\left(\mathbf{A}_{12} \mathbf{A}_{22}^{-1}\right)^{\top}
$$

given $\mathbf{z}_{1}^{(2)}, \ldots, \mathbf{z}_{N-1}^{(2)}$ is distributed as $\sum_{\alpha=1}^{N-1-(p-q)} \mathbf{u}_{\alpha} \mathbf{u}_{\alpha}^{\top}$ and where $\mathbf{u}_{1}, \ldots, \mathbf{u}_{N-1-(p-q)}$ are independent, each with distribution $\mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{11.2}\right)$.

The Distribution of Partial Correlation Coefficient

Since the distribution of $\mathbf{A}_{11.2}=\sum_{\alpha=1}^{N-1-(p-q)} \mathbf{u}_{\alpha} \mathbf{U}_{\alpha}^{\top}$ does not depend on $\mathbf{z}_{\alpha}^{(2)}$, we obtain the following theorem:

Theorem 8

The matrix $\mathbf{A}_{11.2}=\mathbf{A}_{11}-\mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{12}^{\top}$ is distributed as $\sum_{\alpha=1}^{N-1-(p-q)} \mathbf{u}_{\alpha} \mathbf{u}_{\alpha}^{\top}$, where $\mathbf{u}_{1}, \ldots, \mathbf{u}_{N-1-(p-q)}$ are independently distributed, each according to $\mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{11.2}\right)$, and independently of \mathbf{A}_{12} and \mathbf{A}_{22}.

Corollary 3

If $\boldsymbol{\Sigma}_{12}=\mathbf{0}$ (or $\mathbf{B}=\mathbf{0}$), the matrix $\mathbf{A}_{11.2}$ is distributed as $\sum_{\alpha=1}^{N-1-(p-q)} \mathbf{u}_{\alpha} \mathbf{u}_{\alpha}^{\top}$ and the matrix $\mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{12}^{\top}$ is distributed as $\sum_{\alpha=N-(p-q)}^{N-1} \mathbf{u}_{\alpha} \mathbf{u}_{\alpha}^{\top}$, where $\mathbf{u}_{1}, \ldots, \mathbf{u}_{N-1}$ are independently distributed, each according to $\mathcal{N}(\mathbf{0}, \boldsymbol{\Phi})$.

The Distribution of Partial Correlation Coefficient

The distribution of $r_{i j . q+l, \ldots, p}$ and the related tests of hypotheses based on N observations is the same as that of a simple correlation coefficient based on $N-(p-q)$ observations with a corresponding population correlation value of $r_{i j . q+l, \ldots, p}$.

