Multivariate Statistics

Lecture 06

Fudan University

Lecture 06 (Fudan University)

MATH 620156

э

イロン イヨン イヨン イヨン

3

イロン イ理ト イヨト イヨト

2 Consistency

Lecture 06 (Fudan University)

3

イロン イヨン イヨン イヨン

2 Consistency

3 Asymptotic Normality

æ

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

2 Consistency

3 Asymptotic Normality

4 Decision Theory

3

イロン イヨン イヨン イヨン

2 Consistency

- 3 Asymptotic Normality
- 4 Decision Theory
- 5 The Biased Estimator

3

<ロ> (日) (日) (日) (日) (日)

2 Consistency

- 3 Asymptotic Normality
- 4 Decision Theory
- 5 The Biased Estimator
- 6 Chi-Squared Distribution

3

- 4 目 ト - 4 日 ト

2 Consistency

- 3 Asymptotic Normality
- 4 Decision Theory
- 5) The Biased Estimator
- 6 Chi-Squared Distribution

э

- 4 同 6 4 日 6 4 日 6

Efficiency

Definition

If a *p*-component random vector \mathbf{Y} has mean vector $\mathbb{E}[\mathbf{Y}] = \boldsymbol{\nu}$ and covariance matrix $\mathscr{C}(\mathbf{Y}) = \mathbb{E}\left[(\mathbf{Y} - \boldsymbol{\nu})(\mathbf{Y} - \boldsymbol{\nu})^{\top}\right] = \mathbf{\Psi} \succ \mathbf{0}$, then

$$\left\{\mathbf{y}: (\mathbf{y}-\boldsymbol{\nu})^{\top} \mathbf{\Psi}^{-1} (\mathbf{y}-\boldsymbol{\nu}) = p+2 \right\}$$

is called the *concentration ellipsoid* of **Y**.

Remark

Concentration ellipsoid was named from the following property:

• The density defined by a uniform distribution over the interior of the concentration ellipsoid of **Y** has the same mean vector and covariance matrix as **Y**.

Efficiency

Theorem

Let $\theta \in \mathbb{R}^p$ be the parameters of a distribution with the density $f(\mathbf{x}, \theta)$, and \mathbf{t} be its unbiased estimator with covariance matrix Ψ based on Nobservations from $f(\mathbf{x}, \theta)$, i.e., $\mathbb{E}[\mathbf{t}] = \theta, \mathscr{C}(\mathbf{t}) = \Psi$. Then, we have

• the ellipsoid

$$\left\{ \mathbf{t} : N(\mathbf{t} - \boldsymbol{\theta})^{\top} \mathbb{E} \left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \left(\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right)^{\top} \right] (\mathbf{t} - \boldsymbol{\theta}) = p + 2 \right\}$$
(1)

lies entirely within the concentration ellipsoid of t;

• moreover, the Multivariate Cramer-Rao Inequality holds, i.e.,

$$\left(\mathsf{N}\mathbb{E}\left[\frac{\partial \ln f(\mathbf{x},\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\left(\frac{\partial \ln f(\mathbf{x},\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right)^{\top}\right]\right)^{-1} \leq \boldsymbol{\Psi} = \mathbb{E}\left[(\mathbf{t}-\boldsymbol{\theta})(\mathbf{t}-\boldsymbol{\theta})^{\top}\right].$$

()

Efficiency

Definition

- **() t** is said to be *efficient* if the ellipsoid (1) is its concentration ellipsoid.
- **2** In general, the ratio of the volume of (1) to that of the concentration ellipsoid defines the *efficiency* of **t**.

Consider the case of the multivariate normal distribution.

- If $\theta = \mu$, then $\bar{\mathbf{x}}$ is efficient.
- **2** If $\theta = {\mu, \Sigma}$, then $\bar{\mathbf{x}}$ and **S** have efficiency $((N-1)/N)^{p(p+1)/2}$.

Remark

Under suitable regularity conditions, which are satisfied by the multivariate normal distribution, we have

$$\underbrace{\mathbb{E}\left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \left(\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right)^{\top}\right]}_{Information \ Matrix} = -\mathbb{E}\left[\frac{\partial^2 \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\top}}\right].$$

Lecture 06 (Fudan University)

Efficiency

2 Consistency

- 3 Asymptotic Normality
- 4 Decision Theory
- 5 The Biased Estimator
- 6 Chi-Squared Distribution

- 4 週 ト - 4 三 ト - 4 三 ト

Consistency

Definition

A sequence of vectors $\mathbf{t}_n = [t_{1n}, \dots, t_{pn}]^\top$ for $n = 1, 2, \dots$, is a *consistent* estimator of $\boldsymbol{\theta} = [\theta_1, \dots, \theta_p]^\top$ if

 $\mathsf{plim}_{n\to\infty}t_{in}=\theta_i$

for $i = 1, \ldots, p$. That is, for any $\epsilon > 0$

$$\lim_{n\to\infty} P(|t_{in}-\theta_i|<\epsilon)=1, \text{ for } i=1,\ldots,p.$$

By the law of large numbers, x̄ is a consistent estimator of μ if the observations are i.i.d with mean μ (normality is not involved).

The sample covariance matrix is also consistent since

$$\mathbf{S} = rac{1}{N-1}\sum_{lpha=1}^{N}(\mathbf{x}_{lpha}-oldsymbol{\mu})(\mathbf{x}_{lpha}-oldsymbol{\mu})^{ op}-rac{N}{N-1}(ar{\mathbf{x}}-oldsymbol{\mu})(ar{\mathbf{x}}-oldsymbol{\mu})^{ op}.$$

Lecture 06 (Fudan University)

2 Consistency

- 4 Decision Theory
- The Biased Estimator
- 6 Chi-Squared Distribution

- 4 同 6 4 日 6 4 日 6

Asymptotic Normality

Let X_1, \ldots, X_n be independent and identically distributed random variables with the same arbitrary distribution, mean μ , and variance σ^2 .

Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, then the random variable

$$Z = \lim_{n \to \infty} \sqrt{n} \left(\frac{\bar{X}_n - \mu}{\sigma} \right)$$

is a standard normal distribution.

What about multivariate case?

イロト 不得 トイヨト イヨト 二日

Asymptotic Normality

Multivariate central limit theorem.

Theorem

Let p-component vectors $\mathbf{y}_1, \mathbf{y}_2, \ldots$ be i.i.d with means $\mathbb{E}[\mathbf{y}_{\alpha}] = \boldsymbol{\nu}$ and covariance matrices $\mathbb{E}[(\mathbf{y}_{\alpha} - \boldsymbol{\nu})(\mathbf{y}_{\alpha} - \boldsymbol{\nu})^{\top}] = \mathbf{T}$. Then the limiting distribution of

$$\frac{1}{\sqrt{n}}\sum_{\alpha=1}^{n}(\mathbf{y}_{\alpha}-\boldsymbol{\nu})$$

as $n \to +\infty$ is $\mathcal{N}(\mathbf{0}, \mathbf{T})$.

• • = • • = •

Characteristic Function and Probability

If \mathbf{x} does not have a density, the characteristic function uniquely defines the probability of any continuity interval.

Theorem

Let $\{F_j(\mathbf{x})\}\$ be a sequence of cdfs, and let $\{\phi_j(\mathbf{t})\}\$ be the sequence of corresponding characteristic functions. A necessary and sufficient condition for $F_j(\mathbf{x})$ to converge to a cdf $F(\mathbf{x})$ is that, for every \mathbf{t} , $\phi_j(\mathbf{t})$ converges to a limit $\phi(\mathbf{t})$ that is continuous at $\mathbf{t} = \mathbf{0}$. When this condition is satisfied, the limit $\phi(\mathbf{t})$ is identical with the characteristic function of the limiting distribution $F(\mathbf{x})$.

See the proof in Section 10.7 of "Cramer, H. (1946). Mathematical Methods of Statistics. Princeton University Press"

Asymptotic Normality

Theorem

Let

$$\mathbf{A}(n) = \sum_{\alpha=1}^{N} \left(\mathbf{x}_{\alpha} - \bar{\mathbf{x}}_{N} \right) \left(\mathbf{x}_{\alpha} - \bar{\mathbf{x}}_{N} \right)^{\top},$$

where $\mathbf{x}_1, \ldots, \mathbf{x}_N$ are independently distributed according to $\mathcal{N}_p(\mu, \mathbf{\Sigma})$ and n = N - 1. Then the limiting distribution of

$$\mathbf{B}(n) = \frac{1}{\sqrt{n}} \big(\mathbf{A}(n) - n \mathbf{\Sigma} \big)$$

is normal with mean **0** and covariance $\mathbb{E}[b_{ij}(n)b_{kl}(n)] = \sigma_{ik}\sigma_{jl} + \sigma_{il}\sigma_{jk}$.

Efficiency

2 Consistency

- 3 Asymptotic Normality
- 4 Decision Theory
 - 5) The Biased Estimator
- 6 Chi-Squared Distribution

3

イロト イポト イヨト イヨト

Decision Theory

- An observation x is a random variable X, whose distribution P_θ depends on a parameter θ ∈ Θ. The statistician is to make a decision d in a set D.
- A decision procedure is a function δ(·) whose domain is the set of values of x and whose range is D.
- **③** The *loss* in making decision **d** for the distribution $P_{\theta}(\mathbf{x})$ is a nonnegative function $L(\theta, \mathbf{d})$.
- **(**) The evaluation of a procedure $\delta(\mathbf{x})$ is on the basis of the *risk function*

$$R(\theta, \delta) = \mathbb{E}_{\mathbf{x} \sim P_{\theta}} \left[L(\theta, \delta(\mathbf{x})) \right].$$

For example, the risk can be the mean squared error for univariate case

$$R(\theta, \delta) = \mathbb{E}_{\mathbf{x} \sim P_{\theta}} \left[(\delta(\mathbf{x}) - \theta)^2 \right]$$

イロト 不得 トイヨト イヨト

() A decision procedure $\delta(\mathsf{x})$ is as *good* as a procedure $\delta^*(\mathsf{x})$ if

 $R(\theta, \delta) \leq R(\theta, \delta^*),$

and $\delta(\mathbf{x})$ is better than $\delta^*(\mathbf{x})$ if it holds with a strict inequality for at least one value of $\boldsymbol{\theta}$.

- A procedure δ*(x) is *inadmissible* if there exists another procedure δ(x) that is better than δ*(x).
- A procedure is *admissible* if it is not inadmissible (i.e., if there is no procedure better than it) in terms of the given loss function.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

If the parameter θ can be assigned an a prior distribution, say, with density $\rho(\theta)$, then the average loss from use of a decision procedure $\delta(\mathbf{x})$ is

$$r(\rho, \delta) = \mathbb{E}_{\rho} \left[R(\theta, \delta) \right] = \mathbb{E}_{\theta \sim \rho} \left[\mathbb{E}_{\mathbf{x} \sim P_{\theta}} \left[L(\theta, \delta(\mathbf{x})) \right] \right].$$

Given the a prior density ρ , the decision procedure $\delta(\mathbf{x})$ that minimizes $r(\rho, \delta)$ is the *Bayes procedure*, and the resulting minimum of $r(\rho, \delta)$ is the *Bayes risk*.

くほと くほと くほと

Bayes Procedure

If the density of **x** given θ is $f(\mathbf{x} \mid \theta)$, the joint density of **x** and θ is $f(\mathbf{x} \mid \theta)\rho(\theta)$ and the average risk of a procedure $\delta(\mathbf{x})$ is

$$r(\rho, \delta) = \int_{\Theta} \int_{\mathcal{X}} L(\theta, \delta(\mathbf{x})) f(\mathbf{x} \mid \theta) \rho(\theta) \, \mathrm{d}\mathbf{x} \, \mathrm{d}\theta$$
$$= \int_{\mathcal{X}} \underbrace{\left(\int_{\Theta} L(\theta, \delta(\mathbf{x})) g(\theta \mid \mathbf{x}) \, \mathrm{d}\theta \right)}_{\mathbb{E}_{\theta \mid \mathbf{x}} [L(\theta, \delta(\mathbf{x}))]} f(\mathbf{x}) \, \mathrm{d}\mathbf{x}, \tag{2}$$

where

$$f(\mathbf{x}) = \int_{\Theta} f(\mathbf{x} \mid \boldsymbol{ heta})
ho(\boldsymbol{ heta}) \,\mathrm{d} \boldsymbol{ heta} \quad ext{and} \quad g(\boldsymbol{ heta} \mid \mathbf{x}) = rac{f(\mathbf{x} \mid \boldsymbol{ heta})
ho(\boldsymbol{ heta})}{f(\mathbf{x})}$$

are the marginal density of \mathbf{x} and the a posterior density of $\boldsymbol{\theta}$ given \mathbf{x} .

The procedure that minimizes $r(\rho, \delta)$ is one that for each **x** minimizes $\mathbb{E}_{\theta \mid \mathbf{x}} [L(\theta, \delta(\mathbf{x}))]$ in (2), i.e., expectation of $L(\theta, \delta(\mathbf{x}))$ w.r.t. the posterior $g(\theta \mid \mathbf{x})$.

(日) (四) (王) (王) (王)

Bayes Procedure

If θ and δ are vectors and $L(\theta, \delta(\mathbf{x})) = (\theta - \delta(\mathbf{x}))^\top \mathbf{Q}(\theta - \delta(\mathbf{x}))$, where \mathbf{Q} is positive definite. Then we have

$$\begin{split} \mathbb{E}_{\boldsymbol{\theta}|\mathbf{x}} \left[L(\boldsymbol{\theta}, \boldsymbol{\delta}(\mathbf{x})) \right] = & \mathbb{E}_{\boldsymbol{\theta}|\mathbf{x}} \left[(\boldsymbol{\theta} - \boldsymbol{\delta}(\mathbf{x}))^\top \mathbf{Q} (\boldsymbol{\theta} - \boldsymbol{\delta}(\mathbf{x})) \right] \\ = & \mathbb{E}_{\boldsymbol{\theta}|\mathbf{x}} \left[(\boldsymbol{\theta} - \mathbb{E}[\boldsymbol{\theta} \mid \mathbf{x}])^\top \mathbf{Q} (\boldsymbol{\theta} - \mathbb{E}[\boldsymbol{\theta} \mid \mathbf{x}]) \right] \\ & + \mathbb{E}_{\boldsymbol{\theta}|\mathbf{x}} \left[(\boldsymbol{\theta} - \mathbb{E}[\boldsymbol{\theta} \mid \mathbf{x}])^\top \mathbf{Q} (\mathbb{E}[\boldsymbol{\theta} \mid \mathbf{x}] - \boldsymbol{\delta}(\mathbf{x})) \right] \\ & + \mathbb{E}_{\boldsymbol{\theta}|\mathbf{x}} \left[(\mathbb{E}[\boldsymbol{\theta} \mid \mathbf{x}] - \boldsymbol{\delta}(\mathbf{x}))^\top \mathbf{Q} (\boldsymbol{\theta} - \mathbb{E}[\boldsymbol{\theta} \mid \mathbf{x}]) \right] \\ & + \mathbb{E}_{\boldsymbol{\theta}|\mathbf{x}} \left[(\mathbb{E}[\boldsymbol{\theta} \mid \mathbf{x}] - \boldsymbol{\delta}(\mathbf{x}))^\top \mathbf{Q} (\mathbb{E}[\boldsymbol{\theta} \mid \mathbf{x}] - \boldsymbol{\delta}(\mathbf{x})) \right] \\ & = & \mathbb{E}_{\boldsymbol{\theta}|\mathbf{x}} \left[(\boldsymbol{\theta} - \mathbb{E}[\boldsymbol{\theta} \mid \mathbf{x}])^\top \mathbf{Q} (\boldsymbol{\theta} - \mathbb{E}[\boldsymbol{\theta} \mid \mathbf{x}]) \right] \\ & + \mathbb{E}_{\boldsymbol{\theta}|\mathbf{x}} \left[(\mathbb{E}[\boldsymbol{\theta} \mid \mathbf{x}] - \boldsymbol{\delta}(\mathbf{x}))^\top \mathbf{Q} (\mathbb{E}[\boldsymbol{\theta} \mid \mathbf{x}] - \boldsymbol{\delta}(\mathbf{x})) \right] \end{split}$$

and the minimum occurs at $\delta(\mathbf{x}) = \mathbb{E}[\boldsymbol{\theta} \mid \mathbf{x}]$ the mean of the a posterior distribution.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Bayes Procedure

Theorem

If $\mathbf{x}_1, \ldots, \mathbf{x}_N$ are i.i.d. according to $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, and if $\boldsymbol{\mu}$ has an a prior distribution $\mathcal{N}(\boldsymbol{\nu}, \boldsymbol{\Phi})$, then the posterior of $\boldsymbol{\mu}$ given $\mathbf{x}_1, \ldots, \mathbf{x}_N$ is normal with mean

$$\boldsymbol{\Phi}\left(\boldsymbol{\Phi}+\frac{1}{N}\boldsymbol{\Sigma}\right)^{-1}\bar{\mathbf{x}}+\frac{1}{N}\boldsymbol{\Sigma}\left(\boldsymbol{\Phi}+\frac{1}{N}\boldsymbol{\Sigma}\right)^{-1}\boldsymbol{\nu}$$
(3)

and covariance matrix

$$\mathbf{\Phi} - \mathbf{\Phi} \left(\mathbf{\Phi} + \frac{1}{N} \mathbf{\Sigma} \right)^{-1} \mathbf{\Phi}.$$

Corollary

Under the same assumptions of the theorem above, if the loss function is

$$L(heta, \delta(\mathbf{x})) = (heta - \delta(\mathbf{x}))^{ op} \mathbf{Q}(heta - \delta(\mathbf{x}))^{ op}$$

then the Bayes estimator of μ is (3).

Efficiency

2 Consistency

- 3 Asymptotic Normality
- 4 Decision Theory
- 5 The Biased Estimator
 - 6 Chi-Squared Distribution

3

イロト イポト イヨト イヨト

- The sample mean $\bar{\mathbf{x}}$ seems the natural estimator of the population mean μ based on a sample from $\mathcal{N}_{\rho}(\mu, \mathbf{\Sigma})$.
- However, Stein (1956) showed $\bar{\mathbf{x}}$ is not admissible with respect to the mean squared loss when $p \geq 3$.

イロト イポト イヨト イヨト

Consider the loss function

$$L(\boldsymbol{\mu},\mathbf{m}) = \|\boldsymbol{\mu}-\mathbf{m}\|_2^2,$$

where **m** is an estimator of the mean μ .

If $\mathbf{x}_1, \ldots, \mathbf{x}_N$ are independently distributed to $\mathcal{N}_p(\boldsymbol{\mu}, \mathsf{NI})$, we have

$$\mathbb{E}\left[\|ar{\mathbf{x}}-oldsymbol{\mu}\|_2^2
ight] = \sum_{lpha=1}^p \operatorname{Var}(ar{x}_lpha) = oldsymbol{
ho}.$$

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

If $\mathbf{x}_1, \ldots, \mathbf{x}_N$ are independently distributed to $\mathcal{N}_p(\mu, N\mathbf{I})$, for the estimator proposed by James and Stein, i.e.,

$$\mathbf{m}(\mathbf{\bar{x}}) = \left(1 - \frac{p-2}{\|\mathbf{\bar{x}} - \boldsymbol{\nu}\|_2^2}\right)(\mathbf{\bar{x}} - \boldsymbol{\nu}) + \boldsymbol{\nu}$$

where ν is an arbitrary fixed vector and $p \ge 3$. It holds that

$$\mathbb{E}\left[\left\|\mathbf{m}(\bar{\mathbf{x}})-\boldsymbol{\mu}\right\|_{2}^{2}
ight] < \mathbb{E}\left[\left\|\bar{\mathbf{x}}-\boldsymbol{\mu}
ight\|_{2}^{2}
ight].$$

For small values of $\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_2$, the multiplier of $(\bar{\mathbf{x}} - \boldsymbol{\nu})$ is negative; that is, the estimator $m(\bar{\mathbf{x}})$ is in the direction from $\boldsymbol{\nu}$ opposite to that of $\bar{\mathbf{x}}$.

イロト 不得下 イヨト イヨト 二日

Table 3.2 gives values of the risk for p = 10 and $\sigma^2 = 1$. For example, if $\tau^2 = ||\mu - \nu||^2$ is 5, the mean squared error of the James-Stein estimator is 8.86, compared to 10 for the natural estimator; this is the case if $\mu_i - \nu_i = 1/\sqrt{2} = 0.707$, i = 1, ..., 10, for instance.

$\tau^2 = \left\ \mu - \nu \right\ ^2$	$\mathscr{E}_{\mu}\ m(Y)-\mu\ ^2$
0.0	2.00
0.5	4.78
1.0	6.21
2.0	7.51
3.0	8.24
4.0	8.62
5.0	.8.86
6.0	9.03

Table 3.2[†]. Average Mean Squared Error of the James–Stein Estimator for p = 10 and $\sigma^2 = 1$

[†]From Efron and Morris (1977).

The estimator proposed by James and Stein is

$$\mathbf{m}(\mathbf{\bar{x}}) = \left(1 - \frac{p-2}{\|\mathbf{\bar{x}} - \boldsymbol{\nu}\|_2^2}\right)(\mathbf{\bar{x}} - \boldsymbol{\nu}) + \boldsymbol{\nu}.$$

For small values of $\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_2$, the multiplier of $(\bar{\mathbf{x}} - \boldsymbol{\nu})$ is negative; that is, the estimator $m(\bar{\mathbf{x}})$ is in the direction from $\boldsymbol{\nu}$ opposite to that of $\bar{\mathbf{x}}$.

We can improve $\mathbf{m}(\bar{\mathbf{x}})$ by using

$$\tilde{\mathbf{m}}(\bar{\mathbf{x}}) = \left(1 - \frac{p-2}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_2^2}\right)^+ (\bar{\mathbf{x}} - \boldsymbol{\nu}) + \boldsymbol{\nu},$$

which holds that $\mathbb{E}\left[\|\tilde{\mathbf{m}}(\bar{\mathbf{x}}) - \boldsymbol{\mu}\|_2^2\right] \leq \mathbb{E}\left[\|\mathbf{m}(\bar{\mathbf{x}}) - \boldsymbol{\mu}\|_2^2\right].$

・ロン ・四 と ・ ヨ と ・

1 Efficiency

2 Consistency

- 3 Asymptotic Normality
- 4 Decision Theory
- 5 The Biased Estimator

э

- 4 同 6 4 日 6 4 日 6

Definition (Chi-Squared Distribution)

If x_1, \ldots, x_n are independent, standard normal random variables, then the sum of their squares,

$$y=\sum_{i=1}^n x_i^2,$$

is distributed according to the (central) chi-squared distribution (χ^2 -distribution) with *n* degrees of freedom.

This is usually denoted as $y \sim \chi_n^2(0)$ or $y \sim \chi^2(n)$.

We have $\mathbb{E}[y] = n$ and $\operatorname{Var}[y] = 2n$.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The probability density function of the (central) chi-squared distribution is

$$f(y; n) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} y^{\frac{n}{2}-1} \exp\left(-\frac{y}{2}\right), & y > 0; \\ 0, & \text{otherwise}, \end{cases}$$

where

$$\Gamma(\alpha) = \int_0^\infty t^{\alpha-1} \exp(-t) \,\mathrm{d}t.$$

イロト イポト イヨト イヨト

Chi-Squared Distribution

The derivation for the density is based on

We have Γ (¹/₂) = √π.
 For y₁ = x² with x ~ N(0,1), the density function of y₁ is

$$\frac{1}{\sqrt{2\pi y_1}}\exp\left(-\frac{1}{2}y_1\right).$$

③ For beta function $B(\alpha,\beta) = \int_0^1 t^{\alpha-1}(1-t)^{\beta-1} dt$, we have

$$B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}.$$

• If
$$F(z) = \int_{a(z)}^{b(z)} f(y, z) \, dy$$
, then

$$F'(z) = \int_{a(z)}^{b(z)} \frac{\partial f(y, z)}{\partial z} \, dx + f(b(z), z)b'(z) - f(a(z), z)a'(z).$$

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Noncentral Chi-Squared Distribution

Definition (Noncentral Chi-Squared Distribution)

If x_1, \ldots, x_n are independent and each x_i are normally distributed random variables with means μ_i and unit variances, then the sum of their squares,

$$y = \sum_{i=1}^{n} x_i^2,$$

is distributed according to the noncentral Chi-squared distribution with n degrees of freedom and noncentrality parameter

$$\lambda = \sum_{i=1}^{n} \mu_i^2.$$

This is usually denoted as $y \sim \chi_n^2(\lambda)$.

We have $\mathbb{E}[y] = n + \lambda$ and $\operatorname{Var}[y] = 2n + 4\lambda$.

(日) (同) (三) (三) (三)

Noncentral Chi-Squared Distribution

If y_1, \ldots, y_k are independent and each y_i is distributed according to the noncentral chi-squared distribution with n_i degrees of freedom and noncentrality parameter λ_i , then

$$\sum_{i=1}^k y_i \sim \chi^2_{n_1 + \dots + n_k} \left(\sum_{i=1}^k \lambda_i \right).$$

Theorem

If the n-component vector y is distributed according to $\mathcal{N}(\nu,T)$ with $T\succ 0,$ then

$$\mathbf{y}^{\top}\mathbf{T}^{-1}\mathbf{y} \sim \chi_n^2 \left(\boldsymbol{\nu}^{\top}\mathbf{T}^{-1}\boldsymbol{\nu} \right).$$

If $\boldsymbol{\nu} = \boldsymbol{0}$, the distribution is the central χ^2 -distribution.

イロン 不聞と 不同と 不同と