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. . . . . .

The Maximum Likelihood Estimators

.
Theorem 1
..

......

If x1, x2, . . . , xN constitute a sample from N (µ,Σ) with p < N, the
maximum likelihood estimators of µ and Σ are

µ̂ = x̄ =
1

N

N∑
α=1

xα and Σ̂ =
1

N

N∑
α=1

(xα − x̄)(xα − x̄)⊤

respectively.

.
Lemma 1
..

......

If D ∈ Rp×p is positive definite, the maximum of

f (G) = −N ln det(G)− tr(G−1D)

with respect to positive definite matrices G exists, occurs at G = 1
ND.
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The Maximum Likelihood Estimators

.
Theorem 1
..

......

If x1, x2, . . . , xN constitute a sample from N (µ,Σ) with p < N, the
maximum likelihood estimators of µ and Σ are

µ̂ = x̄ =
1

N

N∑
α=1

xα and Σ̂ =
1

N

N∑
α=1

(xα − x̄)(xα − x̄)⊤

respectively.

Can we guarantee Σ̂ =
1

N

N∑
α=1

(xα − x̄)(xα − x̄)⊤ is positive definite?
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. . . . . .

Distribution Theory

In the univariate case, the mean of a sample is distributed normally and
independently of the sample variance.

In the multivariate case, the sample mean µ̂ is also distributed normally
and independently of Σ̂.

.
Lemma 1
..

......

Suppose x1, . . . , xN are independent, where xα ∼ Np(µα,Σ). Let
C ∈ RN×N be an orthogonal matrix, then

yα =
N∑

β=1

cαβxβ ∼ Np(να,Σ),

where ν =
∑N

β=1 cαβµβ for α = 1, . . . ,N and y1, . . . , yN are independent.
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. . . . . .

Distribution Theory

.
Lemma 2
..

......

If C =


c11 c12 . . . c1N
c21 c22 . . . c2N
...

...
. . .

...
cN1 cN2 . . . cNN

 =


c⊤1

c⊤2
...

c⊤N

 ∈ RN×N is orthogonal, then

∑N
α=1 xαx

⊤
α =

∑N
α=1 yαy

⊤
α where yα =

∑N
β=1 cαβxβ for α = 1, . . . ,N.

Let X =


x⊤1

x⊤2
...

x⊤N

 and Y =


y⊤1

y⊤2
...

y⊤N

, then yα = X⊤cα and Y = CX.

Lecture 05 (Fudan University) MATH 620156 6 / 15



. . . . . .

Distribution Theory

.
Theorem 2
..

......

Let x1, . . . , xN be independent, each distributed according to N (µ,Σ).
Then the mean of the sample

µ̂ = x̄ =
1

N

N∑
α=1

xα

is distributed according to N (µ, 1
NΣ) and independent of

Σ̂ =
1

N

N∑
α=1

(xα − x̄)(xα − x̄)⊤.

Additionally, we have NΣ̂ =
∑N−1

α=1 zαz
⊤
α , where zα ∼ N (0,Σ) for

α = 1, . . . ,N − 1, and z1, . . . , zN−1 are independent.
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. . . . . .

Distribution Theory

.
Theorem 1
..

......

If x1, x2, . . . , xN constitute a sample from N (µ,Σ) with p < N, the maximum
likelihood estimators of µ and Σ are

µ̂ = x̄ =
1

N

N∑
α=1

xα and Σ̂ =
1

N

N∑
α=1

(xα − x̄)(xα − x̄)⊤

respectively.

.
Theorem 3
..

......

Using the notation of Theorem 1, if N > p, the probability is 1 of drawing a
sample so that

Σ̂ =
1

N

N∑
α=1

(xα − x̄)(xα − x̄)⊤

is positive definite.
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. . . . . .

Distribution Theory

An estimator t of a parameter vector θ is unbiased if and only if

E[t] = θ.

For the estimators obtain from MLE for normal distribution, the vector µ̂
is an unbiased estimator of µ and Σ̂ is a biased estimator of Σ.
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. . . . . .

Distribution Theory

Consider the result of MLE for normal distribution:
...1 We have

E[µ̂] = E[x̄] = E

[
N∑

α=1

xα

]
= µ

and (not limited to normal distribution)

E
[
Σ̂
]
= E

[
1

N

N−1∑
α=1

zαz
⊤
α

]
=

N − 1

N
Σ.

...2 The sample covariance

S =
1

N − 1

N∑
α=1

(xα − x̄)(xα − x̄)⊤

is an unbiased estimator of Σ.
Lecture 05 (Fudan University) MATH 620156 10 / 15



. . . . . .

Outline

...1 Properties of the Maximum Likelihood Estimators

...2 Sufficiency

...3 Completeness

Lecture 05 (Fudan University) MATH 620156 11 / 15



. . . . . .

Properties of Statistics

Let

x̄ =
1

N

N∑
α=1

xα and S =
1

N − 1

N∑
α=1

(xα − x̄)(xα − x̄)⊤.

We shall show that x̄ and S are sufficient statistics and are complete.
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. . . . . .

Sufficiency
.
Definition
..

......

A statistic t(y) is sufficient for a family of distributions of random
variable y with parameter θ, if the conditional distribution of y given
t(y) = t0 does not depend on θ.

The statistic t gives as much information about θ as the entire sample y.
.
Example
..

......

If Xi , i = 1, . . . ,N are i.i.d. from Bernoulli distribution with P(Xi = 1) = θ, show

that T1 =
∑N

i=1 Xi is sufficient for θ, while T2 = ΠN
i=1Xi is not sufficient.

.
Theorem 4
..

......

A statistic t(y) is sufficient for θ if and only if the density f (y | θ) can be
factored as

f (y | θ) = g(t(y),θ)h(y)

where g(t(y),θ) and h(y) are nonnegative and h(y) does not depend on θ.
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. . . . . .

Sufficiency

For the MLE of normal distribution, we apply the above theorem with

θ = {µ,Σ}, y = {x1, . . . , xN} and t(y) = {x̄,S}.

.
Theorem 5
..

......

If x1, . . . , xN are observations from N (µ,Σ), then x̄ and S are sufficient
for µ and Σ.

.
Remark
..

......

If Σ is given, x̄ is sufficient for µ.

If µ is given,
∑N

α=1(xα − µ)(xα − µ)⊤ is sufficient for Σ, however, S
is not sufficient for Σ;
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. . . . . .

Completeness

.
Definition (Completeness)
..

......

A family of distributions of y indexed by θ is complete if for every
real-valued function g(y), we have

E[g(y)] ≡ 0

identically in θ implies g(y) = 0 except for a set of y of probability 0 for
every θ.

If the family of distributions of a sufficient set of statistics is complete, the
set is called a complete sufficient set.
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. . . . . .

Completeness

.
Theorem 6
..

......

The sufficient set of statistics x̄, S is complete for µ,Σ when the sample is
drawn from N (µ,Σ).

Sketch of the proof:
...1 We have NΣ̂ =

∑N−1
α=1 zαz

⊤
α , where zα =

∑N
β=1 bαβxβ and

B =


× . . . ×
...

. . .
...

1√
N

. . . 1√
N


...2 The condition E[g(x̄, nS)] ≡ 0 implies the Laplace transform of
g
(
x̄,B− N x̄x̄⊤

)
h(x̄,B) is zero, where B =

∑N−1
α=1 zαz

⊤
α + N x̄x̄⊤ and

h(x̄,B) is the joint density of x̄ and B.
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