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The Maximum Likelihood Estimators

Theorem 1

If x1,X2,...,Xy constitute a sample from N (u, X) with p < N, the
maximum likelihood estimators of p and X are

1< 1

N Zxa and X = N Z(XO‘ —X)(xa —X) "

a=1

respectively.

Lemma 1

If D € RP*P is positive definite, the maximum of

f(G) = —NIndet(G) — tr(G'D)

with respect to positive definite matrices G exists, occurs at G = %D.
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The Maximum Likelihood Estimators

Theorem 1

If x1,X2,...,Xy constitute a sample from N (p,

X)) with p < N, the
maximum likelihood estimators of 1 and X are

N
— :—Zxa and Z_NZ( —i)(xa—’_‘)T
a=1

respectively.

N
| B o
Can we guarantee X = N E (Xxa — X) (X0 — X)

a=1

is positive definite?
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Distribution Theory

In the univariate case, the mean of a sample is distributed normally and
independently of the sample variance.

In the multivariate case, the sample mean [ is also distributed normally
and independently of X.

Lemma 1

Suppose X1, ..., Xy are independent, where xo ~ Np(pq, X). Let
C € RV*N be an orthogonal matrix, then

N
Yo = Z CaBXp NNp(Von Z)a
B=1

where v = Zg’:l Capttg fora=1,...,N and yj,...,yn are independent.

V.
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Distribution Theory

Lemma 2
_C]—-I—_
¢i1 €2 ... CGpn
€1 2 Con =y
fC=| . L = € RV*N is orthogonal, then
Cn1 Cn2 .- CNN T
LCp
N T _ N T N _
Y a1 XaXq = D .0—1YaYa Wherey, = Zﬂ:l Capxg fora=1,... N.

_XI__ _yir_.
X3 ys

Let X=1| |and¥Y = | |, theny,= XTc, and Y = CX.
[ x ] Ly
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Distribution Theory

Let x1,...,xy be independent, each distributed according to N (u, X).
Then the mean of the sample

Additionally, we have N& = S"N"1 2 7T where z, ~ N(0, ) for

a=1
a=1,...,N—1, and z;1,...,zy_1 are independent.
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Distribution Theory

Theorem 1

If x1,Xa, ..., Xy constitute a sample from N(w, X) with p < N, the maximum
likelihood estimators of pu and X are

< il &
a = ’\_ — —T
p=x=4 E X, and Z—N}ﬂ(xa—x)(xa—x)

a=1

respectively.

Theorem 3

Using the notation of Theorem 1, if N > p, the probability is 1 of drawing a
sample so that

| A\

£ = LN R -1
7N;(XQ_X)(XQ_X)

is positive definite.

.
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Distribution Theory

An estimator t of a parameter vector @ is unbiased if and only if

E[t] = 6.

For the estimators obtain from MLE for normal distribution, the vector [
is an unbiased estimator of g and X is a biased estimator of X.
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Distribution Theory

Consider the result of MLE for normal distribution:

@ We have
N
Ep] =EX =E |) x| =p
a=1
and (not limited to normal distribution)
N—1
- 1 T N-—-1
E[Z] =E Naz_;lzaza :TZ
© The sample covariance
L
_ 3 _ T
S = ’V—lazl(xa %)(Xa — X)

is an unbiased estimator of X.
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Properties of Statistics

Let

1 & 1 <
= _ _ = AT
X—NE Xo and S—mg (Xa — X)(Xq — X) .

a=1 a=1

We shall show that X and S are sufficient statistics and are complete.
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Sufficiency

Definition

A statistic t(y) is sufficient for a family of distributions of random
variable y with parameter 0, if the conditional distribution of y given
t(y) = to does not depend on 6.

The statistic t gives as much information about 0 as the entire sample y.

Example
If X;;i=1,...,N arei.id. from Bernoulli distribution with P(X; = 1) = 6, show
that T; = Z,N:l X; is sufficient for 6, while T, = I'IlNle,- is not sufficient.
Theorem 4

A statistic t(y) is sufficient for @ if and only if the density f(y | @) can be
factored as

|

fy [ 8) = g(t(y), 0)h(y)
where g(t(y), 8) and h(y) are nonnegative and h(y) does not depend on 6.
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Sufficiency

For the MLE of normal distribution, we apply the above theorem with

0={pnx}, y={x1,....,xpy} and t(y)={x,S}.

If x1,...,xy are observations from N (u, X), then X and S are sufficient
for p and X.

e If X is given, X is sufficient for p.

o Ifpis given,zglzl(xa — ) (Xo — p)
is not sufficient for X;

T is sufficient for X, however, S

.
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Completeness

Definition (Completeness)

A family of distributions of y indexed by 6 is complete if for every
real-valued function g(y), we have

Elg(y)] =0
identically in @ implies g(y) = 0 except for a set of y of probability 0 for

every 6.

If the family of distributions of a sufficient set of statistics is complete, the
set is called a complete sufficient set.

v
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Completeness

Theorem 6

The sufficient set of statistics X, S is complete for p, ¥ when the sample is
drawn from N (p, X).

Sketch of the proof:
Q@ We have NX = Zg:_ll 2,2}, where z, = Zg’zl bagxg and

X X
B = :
1 1
VN VN

@ The condition E[g(x, nS)] = 0 implies the Laplace transform of
g (x,B — Nxx') h(x, B) is zero, where B = Zg;[ 2,2z, + Nxx" and
h(x, B) is the joint density of X and B.
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