Multivariate Statistics

Lecture 05

Fudan University

Lecture 05 (Fudan University)

MATH 620156

э

イロン イヨン イヨン イヨン

3

イロン イヨン イヨン イヨン

3

MATH 620156

3

Outline

Properties of the Maximum Likelihood Estimators

3

The Maximum Likelihood Estimators

Theorem 1

If $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$ constitute a sample from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{p} < N$, the maximum likelihood estimators of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ are

$$\hat{\boldsymbol{\mu}} = \bar{\mathbf{x}} = \frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \text{ and } \hat{\boldsymbol{\Sigma}} = \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}$$

respectively.

Lemma 1

If $\mathbf{D} \in \mathbb{R}^{p \times p}$ is positive definite, the maximum of

$$f(\mathbf{G}) = -\mathit{N}$$
 In $\det(\mathbf{G}) - \operatorname{tr}(\mathbf{G}^{-1}\mathbf{D})$

with respect to positive definite matrices **G** exists, occurs at $\mathbf{G} = \frac{1}{N}\mathbf{D}$.

< = > < = >

The Maximum Likelihood Estimators

Theorem 1

If $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$ constitute a sample from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with p < N, the maximum likelihood estimators of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ are

$$\hat{\boldsymbol{\mu}} = \bar{\mathbf{x}} = \frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \text{ and } \hat{\boldsymbol{\Sigma}} = \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}$$

respectively.

Can we guarantee
$$\hat{\boldsymbol{\Sigma}} = \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}$$
 is positive definite?

通 ト イヨ ト イヨト

In the univariate case, the mean of a sample is distributed normally and independently of the sample variance.

In the multivariate case, the sample mean $\hat{\mu}$ is also distributed normally and independently of $\hat{\Sigma}$.

Lemma 1

Suppose $\mathbf{x}_1, \ldots, \mathbf{x}_N$ are independent, where $\mathbf{x}_\alpha \sim \mathcal{N}_p(\boldsymbol{\mu}_\alpha, \boldsymbol{\Sigma})$. Let $\mathbf{C} \in \mathbb{R}^{N \times N}$ be an orthogonal matrix, then

$$\mathbf{y}_{lpha} = \sum_{eta=1}^{N} c_{lphaeta} \mathbf{x}_{eta} \sim \mathcal{N}_{p}(oldsymbol{
u}_{lpha}, oldsymbol{\Sigma}),$$

where $\boldsymbol{\nu} = \sum_{\beta=1}^{N} c_{\alpha\beta} \boldsymbol{\mu}_{\beta}$ for $\alpha = 1, \dots, N$ and $\mathbf{y}_1, \dots, \mathbf{y}_N$ are independent.

イロト 不得下 イヨト イヨト 二日

Lemma 2

If
$$\mathbf{C} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1N} \\ c_{21} & c_{22} & \dots & c_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ c_{N1} & c_{N2} & \dots & c_{NN} \end{bmatrix} = \begin{bmatrix} c_1^\top \\ c_2^\top \\ \vdots \\ c_N^\top \end{bmatrix} \in \mathbb{R}^{N \times N} \text{ is orthogonal, then}$$

$$\sum_{\alpha=1}^N \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^\top = \sum_{\alpha=1}^N \mathbf{y}_{\alpha} \mathbf{y}_{\alpha}^\top \text{ where } \mathbf{y}_{\alpha} = \sum_{\beta=1}^N c_{\alpha\beta} \mathbf{x}_{\beta} \text{ for } \alpha = 1, \dots, N.$$

Let
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^\top \\ \mathbf{x}_2^\top \\ \vdots \\ \mathbf{x}_N^\top \end{bmatrix}$$
 and $\mathbf{Y} = \begin{bmatrix} \mathbf{y}_1^\top \\ \mathbf{y}_2^\top \\ \vdots \\ \mathbf{y}_N^\top \end{bmatrix}$, then $\mathbf{y}_{\alpha} = \mathbf{X}^\top \mathbf{c}_{\alpha}$ and $\mathbf{Y} = \mathbf{C}\mathbf{X}$.

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

Theorem 2

Let $\mathbf{x}_1, \ldots, \mathbf{x}_N$ be independent, each distributed according to $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then the mean of the sample

$$\hat{oldsymbol{\mu}} = ar{f x} = rac{1}{N}\sum_{lpha=1}^N {f x}_lpha$$

is distributed according to $\mathcal{N}(\mu, rac{1}{N}oldsymbol{\Sigma})$ and independent of

$$\hat{\mathbf{\Sigma}} = rac{1}{N}\sum_{lpha=1}^{N}(\mathbf{x}_{lpha}-ar{\mathbf{x}})(\mathbf{x}_{lpha}-ar{\mathbf{x}})^{ op}.$$

Additionally, we have $N\hat{\boldsymbol{\Sigma}} = \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$, where $\mathbf{z}_{\alpha} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$ for $\alpha = 1, \dots, N-1$, and $\mathbf{z}_{1}, \dots, \mathbf{z}_{N-1}$ are independent.

イロン 不通 と 不良 と 不良 と 一度

Theorem 1

If $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$ constitute a sample from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{p} < N$, the maximum likelihood estimators of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ are

$$\hat{\boldsymbol{\mu}} = \bar{\mathbf{x}} = \frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \text{ and } \hat{\boldsymbol{\Sigma}} = \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}$$

respectively.

Theorem 3

Using the notation of Theorem 1, if N > p, the probability is 1 of drawing a sample so that

$$\hat{\mathbf{\Sigma}} = rac{1}{N}\sum_{lpha=1}^{N}(\mathbf{x}_{lpha}-ar{\mathbf{x}})(\mathbf{x}_{lpha}-ar{\mathbf{x}})^{ op}$$

is positive definite.

An estimator ${f t}$ of a parameter vector ${m heta}$ is unbiased if and only if

$$\mathbb{E}[\mathbf{t}] = \boldsymbol{\theta}.$$

For the estimators obtain from MLE for normal distribution, the vector $\hat{\mu}$ is an unbiased estimator of μ and $\hat{\Sigma}$ is a biased estimator of Σ .

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Consider the result of MLE for normal distribution:

We have

$$\mathbb{E}[\hat{\mu}] = \mathbb{E}[ar{\mathsf{x}}] = \mathbb{E}\left[\sum_{lpha=1}^{N} \mathsf{x}_{lpha}
ight] = \mu$$

and (not limited to normal distribution)

$$\mathbb{E}\big[\hat{\boldsymbol{\Sigma}}\big] = \mathbb{E}\left[\frac{1}{N}\sum_{\alpha=1}^{N-1} \mathsf{z}_{\alpha}\mathsf{z}_{\alpha}^{\top}\right] = \frac{N-1}{N}\boldsymbol{\Sigma}.$$

2 The sample covariance

$$\mathbf{S} = rac{1}{N-1}\sum_{lpha=1}^{N}(\mathbf{x}_{lpha}-ar{\mathbf{x}})(\mathbf{x}_{lpha}-ar{\mathbf{x}})^{ op}$$

is an unbiased estimator of Σ .

MATH 620156

3

イロト イポト イヨト イヨト

Lecture 05 (Fudan University)

MATH 620156

3

イロン イヨン イヨン イヨン

Properties of Statistics

Let

$$ar{\mathbf{x}} = rac{1}{N}\sum_{lpha=1}^N \mathbf{x}_lpha \quad ext{and} \quad \mathbf{S} = rac{1}{N-1}\sum_{lpha=1}^N (\mathbf{x}_lpha - ar{\mathbf{x}}) (\mathbf{x}_lpha - ar{\mathbf{x}})^ op.$$

We shall show that $\bar{\boldsymbol{x}}$ and \boldsymbol{S} are sufficient statistics and are complete.

3

Sufficiency

Definition

A statistic $\mathbf{t}(\mathbf{y})$ is *sufficient* for a family of distributions of random variable \mathbf{y} with parameter $\boldsymbol{\theta}$, if the conditional distribution of \mathbf{y} given $\mathbf{t}(\mathbf{y}) = \mathbf{t}_0$ does not depend on $\boldsymbol{\theta}$.

The statistic **t** gives as much information about heta as the entire sample **y**.

Example

If $X_i, i = 1, ..., N$ are i.i.d. from Bernoulli distribution with $P(X_i = 1) = \theta$, show that $T_1 = \sum_{i=1}^{N} X_i$ is sufficient for θ , while $T_2 = \prod_{i=1}^{N} X_i$ is not sufficient.

Theorem 4

A statistic $\mathbf{t}(\mathbf{y})$ is sufficient for $\boldsymbol{\theta}$ if and only if the density $f(\mathbf{y} \mid \boldsymbol{\theta})$ can be factored as

$$f(\mathbf{y} \mid \boldsymbol{\theta}) = g(\mathbf{t}(\mathbf{y}), \boldsymbol{\theta})h(\mathbf{y})$$

where $g(\mathbf{t}(\mathbf{y}), \boldsymbol{\theta})$ and $h(\mathbf{y})$ are nonnegative and $h(\mathbf{y})$ does not depend on $\boldsymbol{\theta}$.

Sufficiency

For the MLE of normal distribution, we apply the above theorem with

$$\boldsymbol{\theta} = \{\boldsymbol{\mu}, \boldsymbol{\Sigma}\}, \quad \boldsymbol{\mathsf{y}} = \{\boldsymbol{\mathsf{x}}_1, \dots, \boldsymbol{\mathsf{x}}_N\} \quad \text{and} \quad \boldsymbol{\mathsf{t}}(\boldsymbol{\mathsf{y}}) = \{\bar{\boldsymbol{\mathsf{x}}}, \boldsymbol{\mathsf{S}}\}.$$

Theorem 5

If x_1, \ldots, x_N are observations from $\mathcal{N}(\mu, \Sigma)$, then \bar{x} and S are sufficient for μ and Σ .

Remark

• If Σ is given, $\bar{\mathbf{x}}$ is sufficient for μ .

• If μ is given, $\sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \mu) (\mathbf{x}_{\alpha} - \mu)^{\top}$ is sufficient for $\boldsymbol{\Sigma}$, however, \mathbf{S} is not sufficient for $\boldsymbol{\Sigma}$;

Lecture 05 (Fudan University)

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3

Completeness

Definition (Completeness)

A family of distributions of **y** indexed by θ is **complete** if for every real-valued function $g(\mathbf{y})$, we have

 $\mathbb{E}[g(\mathbf{y})] \equiv 0$

identically in θ implies $g(\mathbf{y}) = 0$ except for a set of \mathbf{y} of probability 0 for every θ .

If the family of distributions of a sufficient set of statistics is complete, the set is called a complete sufficient set.

- 4 週 ト - 4 三 ト - 4 三 ト - -

Completeness

Theorem 6

The sufficient set of statistics $\bar{\mathbf{x}}$, **S** is complete for μ , $\boldsymbol{\Sigma}$ when the sample is drawn from $\mathcal{N}(\mu, \boldsymbol{\Sigma})$.

Sketch of the proof:

• We have
$$N\hat{\Sigma} = \sum_{\alpha=1}^{N-1} \mathsf{z}_{\alpha} \mathsf{z}_{\alpha}^{\top}$$
, where $\mathsf{z}_{\alpha} = \sum_{\beta=1}^{N} b_{\alpha\beta} \mathsf{x}_{\beta}$ and

$$\mathbf{B} = \begin{bmatrix} \times & \dots & \times \\ \vdots & \ddots & \vdots \\ \frac{1}{\sqrt{N}} & \dots & \frac{1}{\sqrt{N}} \end{bmatrix}$$

2 The condition $\mathbb{E}[g(\bar{\mathbf{x}}, n\mathbf{S})] \equiv 0$ implies the Laplace transform of $g(\bar{\mathbf{x}}, \mathbf{B} - N\bar{\mathbf{x}}\bar{\mathbf{x}}^{\top}) h(\bar{\mathbf{x}}, \mathbf{B})$ is zero, where $\mathbf{B} = \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} + N\bar{\mathbf{x}}\bar{\mathbf{x}}^{\top}$ and $h(\bar{\mathbf{x}}, \mathbf{B})$ is the joint density of $\bar{\mathbf{x}}$ and \mathbf{B} .

(人間) システン ステン