Multivariate Statistics J

Lecture 04

Fudan University

Lecture 04 (Fudan University) MATH 620156 1/31



Outline

@ Muiltivariate Normal Distribution (Conditional Distribution)

Lecture 04 (Fudan University) MATH 620156 2/31



Outline

@ Muiltivariate Normal Distribution (Conditional Distribution)

© Characteristic Function

Lecture 04 (Fudan University) MATH 620156 2/31



Outline

@ Muiltivariate Normal Distribution (Conditional Distribution)

© Characteristic Function

© Maximum Likelihood Estimator of Mean and Covariance

Lecture 04 (Fudan University) MATH 620156 2/31



Outline

@ Muiltivariate Normal Distribution (Conditional Distribution)

Lecture 04 (Fudan University) MATH 620156 3/31



Multivariate Normal Distribution (Conditional Distribution)

Let x be distributed according to N,(p, X) with X - 0. Let us partition
x(1) 1 )
X = with x1) € RY and x(?) ¢ RP79.
x(2)
The joint density of y() = x(1) — 2122;21x(2) and y®@ = x(@ is
g(y) = n(y® | p® — Zp55u® B0y - T2 Eor)n(y® | u®), X20).

Consider that
(1) | -3, 31 (1)
y _ 1225 | |X _
b =lo 57 [xa =

f(x) = g(u(x))| det(J(x))| = g(u(x)).
MATH 620156 Ve

and use



Multivariate Normal Distribution (Conditional Distribution)

The resulting joint density of x(1) and x(®) is

f(x) = f(xM,x?)
=n(y® | up® —ZpF 0 p@ Ty - THpE 0 T0)n(x?) | u? £0)
1

1 Te-1
= _Z _ ¥ _
(27)9 det(Z110) exp ( 5 (X11.2 N11‘2) 11.2 (X11‘2 H11.2))

1 1 2 2 T -1 2 2

where

x11.2 =x() — 21222_21)((2)7
pi12 =) — 2122521M(2)7
Ti12=%11 — 12X, X0
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Multivariate Normal Distribution (Conditional Distribution)

The marginal density of x(? is

F(x?) = n(y® | @, )
1 1 T
_ i@ @) g1 (4@ @ >
ex X X .
\/(271')’37‘7 det(222) P ( 2 ( H ) 2 ( K )

Hence, the conditional density of x(!) given that x(?) is

f(x(1)7 X(Z))

O 1) = =y

N~

1 Te_1
= — _ ¥ _
(27r)‘7det(}:11‘2) exp ( (X11.2 N11.2) 11.2 (X11.2 N11‘2))
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Multivariate Normal Distribution (Conditional Distribution)
The conditional density of x(!) given that x(® is

F(xD, x()
D x@y A2 -2 )
f(X | X ) - f(X(2))
_ 1

1 T o1
= _Z _ > _
(27r)qdet(}:11_2) exp ( 5 (X11.2 H11.2) 11.2 (X11.2 uu.z))

Consider that x11.5 — p11.0 = x) — (@ + X557 (x?) — @),
The density f(x®) | x(?)) is a g-variate normal density with mean

]E[x(l) | x(2)] =p® + X5 (x® — p?) = p(x?)
and covariance matrix (not depend on x(?))

Cov [X(l) | X(2)} :E[(x(l) _ u(x(z)))(x(l) _ V(X(2)))T | x(2)]
=Xy =%11 — Zp¥, Ty < Xy

Lecture 04 (Fudan University) MATH 620156 6 /31



Multivariate Normal Distribution (Conditional Distribution)

The density f(x1, x2) can be thought of as a surface z = f(xy, xo) over the
X1, Xo-plane.

If we intersect this surface with the plane x, = ¢, we obtain a curve z = f(xq, ¢)
over the line x, = ¢ in the x;, x>-plane.

The ordinate of this curve is proportional to the conditional density of x; given

Xxp = c; that is, it is proportional to the ordinate of the curve of a univariate
normal distribution.

standard Bivariate Normal Distribution
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Correlation Coefficient

Recall that for random vector x = [x1, X2, ..., xp] |, we define the

covariance matrix as

011 012 ... Olp
o o ... O

5 _ 21 022 2p c RP¥P
Opl Op2 ... Opp

and the correlation coefficient between x; and x; as (suppose X > 0)
Tij

SARNC N

8 /31
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Partial Correlation Coefficient

Now consider the partition

xXMW @) 2) ¢ po-
X = [x(z)} with x'*/ € R9 and x'¢ € RP79.

Let
011.g+1,...p 012.gq+1,..p --- Olgg+1,..,.p
Y= 0'21~q4'r1,...,p 0'22-q.+1,...,p . 0'2q-q4'r1,...,p c RI¥A.
Oql-g+1,..p 0q2:q+1,..p --- Oqq-q+l,..p
We define
Pij-g4+1,...0 = Oiatd. P
n \/Uii-qul,...,p\/ajj'qul,...,p
as the partial correlation between x; and x; holding xg1, ..., X, fixed.
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Multiple Correlation Coefficient

We again consider x ~ N,(p, X) such that
(1) (1) >, X
X © 11 212
X = , = and X = >~ 0.
[X(z)} a [u(z)} [):21 ):22]
Then, we study some properties of Bx(®, where

B=XpX,,

is the matrix of regression coefficients of x(1) on x(?)

The vector E[x() | x®)] = p@) + B(x(?) — u(?) is called the regression
function.
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Multiple Correlation Coefficient

The vector
x(11:2) = x() _ (5, 1 B(x® — @)

is the vector of residuals of x(!) from its regression on x(2).

The components of x(11-2) are uncorrelated with the components of x(2)
since we have

«(112) — () _ gy (1]

such that
y(l) _ | _2122521 X(l) _ x(l)_Bx(z)
v =l 1 el @ |
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Multiple Correlation Coefficient

For x ~ N,(p, ) and every vector o € R(P~9), we have

Var(x(11'2)) < Var(x; — aTx(2)),

i

11.2
where x,-( )

respectively.

and x; are the i-th entry of x(112) and the i-th entry of x

Observe that
Ble] = pir + o (<2 — u),
which means
pi+ B (@ — u®)

is the best linear predictor of x; in all functions of the form a"x@ + ¢, the mean
squared error of the above is a minimum.
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Multiple Correlation Coefficient

The correlation of two variables z; and z is defined as

Cov|zy, 2] '
\/Var[z;1]|Var|z)]

The maximum correlation between x; and the linear combination a'x? s
called the multiple correlation coefficient between x; and o x(2).

Corr(z1,z0) =

Under the setting of Theorem 1, prove that

Corr [x;,,@?lf)xw)} > Corr |:X,', aTx(z)}

for every a € R(P~9).
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Characteristic Function

The characteristic function of a p-dimensional random vector x is

é(t) = E [exp(ith)}

defined for every real vector t € RP.

For the complex-valued function g(z) be written as
8(2) = &1(2) +1g2(2),
where gi(z) and g»(z) are real-valued, the expected value of g(z) is

Elg(2)] = Elgi(2)] + i E[g2(2)]
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Characteristic Function

(1)
Let x = [i(z)] be a p-dimensional random vector. If x(!) and x(?) are

independent and g(x) = g™ (x1)g(®(x()), then we have

If the components of x are mutually independent, then

E[exp 1t x = {Hexp 1tjx; ] .
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Characteristic Function

The characteristic function of x distributed according to Np(u, X) is

o(t) = exp <i thp— %tTZt> .

for every t € RP.

Sketch of the proof
© The characteristic function of y ~ N,(0,1) is ¢o(t) = exp (—3t't).
@ For x ~ N,(u, X), we have x = Ay + p such that ¥ = AAT.
© Using ¢o(t) to present the characteristic function of x ~ N,(p, X).
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Characteristic Function

The characteristic function of x distributed according to Np(u, X) is

o(t) = exp <itTu - %tTZt> .

for every t € RP.

We can use this theorem to prove z = Dx ~ N (Du, DEDT) easily.
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Characteristic Function

The following theorem can be viewed as another definition of multivariate
normal distribution.

If every linear combination of the components of a random vector y is
normally distributed, then y is normally distributed.

In other words, if the p-dimensional random vector y leads to the
univariate random variable

uTy

is normally distributed for any fixed u € RP, then y is normally distributed.
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Characteristic Function

Problem in Exam

Let x ~ Np(p1, X1), y ~ Np(p2, X2) and z = x +y. Suppose that x and
y are independent. Prove z ~ Nj,(p1 + po, X1 + X).

Use characteristic function to avoid using density.
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Characteristic Function and Density

The characteristic function determines the density function uniquely (if the
density exists).

Theorem 4

If the p-dimensional random vector x has the density f(x) and the
characteristic function ¢(t), then

f(X) — # /:: S /_O; exp(—ith) ¢(t) dty ... dtp.

See the proof in Section 10.6 of “Cramer, H. (1946). Mathematical
Methods of Statistics. Princeton University Press”.
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Characteristic Function and Probability

If x does not have a density, the characteristic function uniquely defines
the probability of any continuity interval.

Theorem 5

Let {Fj(x)} be a sequence of cdfs, and let {¢;(t)} be the sequence of
corresponding characteristic functions. A necessary and sufficient condition
for Fj(x) to converge to a cdf F(x) is that, for every t, ¢;(t) converges to
a limit ¢(t) that is continuous at t = 0. When this condition is satisfied,
the limit ¢(t) is identical with the characteristic function of the limiting
distribution F(x).

See the proof in Section 10.7 of “Cramer, H. (1946). Mathematical
Methods of Statistics. Princeton University Press”
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Characteristic Function and Moments

If the n-th moment of random variable x, denoted by E[x"], exists and is
finite, then its characteristic function is n times continuously differentiable

and
1 d"¢(t)
E[x"l = =
'] in dtn t_o’
which is because of
d"o(t
o) _ (i 00)]

=E[(ix)" exp(i tx)]
=i"E [x" exp(i tx)] .

—E[ J

22 /31
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Characteristic Function and Moments

For normal distributed random vector x ~ N, (p, X) and its characteristic
function ¢(t) = exp (it p — StTXt), we have

1do(t) 1. P
E[xp] = b, =3 1Mh*ZUhjtj B(t) = Kh
t=0 Jj=1 t=0
and
1 9¢(t)

E[thj] o 176th atj o

1 P P
=2 (( Z(fhktk + iMh) - 0hj> (( ngjtk + iHj) - Uhj) B(t)

k=1 k=1 t=0

=0hj + Hhpj-

Thus, we have
Var(xs) =Elxp, — pn]* = E[xq] — iy, = o,
Cov(xn, x;) =E[(xh — pn)(xj — 1j)] = Elxoxj] — paptj = 0.
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Characteristic Function and Moments

If all the moments of a distribution exist, then the cumulants are the
coefficients & in

|0g ¢( Z Z s, . . lt]_ ' . . (itp)SP

. Sp!
s1=0 Sp= p

In the case of the multivariate normal distribution, we have

K100..0 = M1, K010..0 = M2, ... K000..1 = Hp,

and

K200..0 = 011, K110.0 =012, ... K000..2 = Opp-

The cumulants for which Y s; > 2 are 0.
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The Maximum Likelihood Estimators

Given a sample of (vector) observations from a p-variate (non-singular)
normal distribution, we ask for estimators of the mean vector p and the
covariance matrix X of the distribution.

Suppose our sample of N observations on the x1,x2, ..., Xy, which are
distributed according to N(u, X), where N > p. The likelihood function is

N
L:Hn(xalu,Z)

a=1

— 1 - exp ! zN:(xa — M)Tzfl(xa — )
(21)% (det(X))2 2:3
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The Maximum Likelihood Estimators

The likelihood function is

N
1 1 _
L=—fp 7 exp |~ D (o= 1) T (%0 — 1)
(2m)% (det(X))* a=1
The vectors x1, X2, ..., Xy are fixed at the sample values and L is a

function of p and .

The logarithm of the likelihood function is

PN N
InL——7|n27r——|n (det(Xx —*Z(Xa “Hxa — ).

Since In L is an increasing function of L, the maximum likelihood
estimators of g and X are the vector and the positive definite matrix that
maximize In L.
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The Maximum Likelihood Estimators

Let the mean vector be

_ N _
3
Y Xla
1 N Na:l X1
X = m E 1xa = N =|:
a= k2
1 Xp
N 2%
L a=1 u
where
Xla 1 N
Xo = | - and Xx; = N E Xiey-
Xpa a=1

Let the matrix of sums of squares and cross products of deviations about the
mean be

1 & ) o
A= N(XZ:I(XQ —X)(Xo — X)
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The Maximum Likelihood Estimators

Theorem 6

If x1,X2,...,Xy constitute a sample from N(u, ) with p < N, the
maximum likelihood estimators of p and X are
1< 1<
I )_(:N§:1Xa and )::szl(xa—)'()(xa—)'()T
a= o=

respectively.

Lemma 1

| \

If D € RP*P is positive definite, the maximum of

f(G) = —NIndet(G) — tr(G'D)

with respect to positive definite matrices G exists, occurs at G = %D.
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The Maximum Likelihood Estimators

The maximum likelihood estimators of functions of the parameters are
those functions of the maximum likelihood estimators of the parameters.

Let £(0) be a real-valued function defined on a set S and let ¢ be a
single-valued function, with a single-valued inverse, on S to a set §*. Let

g(0") =f (¢7(67).

Then if £(0) attains a maximum at 6 = 6y, then g(0*) attains a
maximum at 8% = 6§ = ¢(6p). If the maximum of f(@) at 8y is unique,
so is the maximum of g(6*) at 6j.
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The Maximum Likelihood Estimators

If on the basis of a given sample 9A1, ..., 0, are maximum likelihood
estimators of the parameters 91, ..., 0, of a distribution, then

¢1(91, - ), .- .,¢m(91, - ) are maximum likelihood estimator of
61(01,...,0m), ..., 6m(01,...,0m) if the transformation from 6y,...,0,,
to ¢1,...,¢m is one-to-one. If the estimators of #1,...,6,, are unique,
then the estimators of ¢1, ..., ¢, are unique.

Corollary 3

| \

If x1,...,%xy constitutes a sample from N(u, X), let pjj = i /(0i0;).
Then the maximum likelihood estimator of pj; is

N — —
N 1 )
-
N = N —
VN (e — %2 SN (e — %)2
MATH 620156 303
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The Maximum Likelihood Estimators

If :S — S* is not one-to-one, we let

¢1(0%) = {0:6" = ¢(6)}.

and define (the induced likelihood function)
g(0") = sup{f (6) : 6" = $(6)}.

If & = 6 maximize £(0), then 8* = ¢(8) also maximize g(6*).
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