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Multivariate Normal Distribution (Conditional Distribution)

Let x be distributed according to Np(µ,Σ) with Σ � 0. Let us partition

x =

[
x(1)

x(2)

]
with x(1) ∈ Rq and x(2) ∈ Rp−q.

The joint density of y(1) = x(1) −Σ12Σ−122 x(2) and y(2) = x(2) is

g(y) = n(y(1) | µ(1) −Σ12Σ−122 µ
(2),Σ11 −Σ12Σ−122 Σ21)n(y(2) | µ(2),Σ22).

Consider that [
y(1)

y(2)

]
=

[
I −Σ12Σ−122

0 I

] [
x(1)

x(2)

]
= u(x)

and use

f (x) = g(u(x))| det(J(x))| = g(u(x)).
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Multivariate Normal Distribution (Conditional Distribution)

The resulting joint density of x(1) and x(2) is

f (x) = f (x(1), x(2))

=n(y(1) | µ(1) −Σ12Σ−122 µ
(2),Σ11 −Σ12Σ−122 Σ21)n(x(2) | µ(2),Σ22)

=
1√

(2π)q det(Σ11.2)
exp

(
−1

2
(x11.2 − µ11.2)>Σ−111.2 (x11.2 − µ11.2)

)
· 1√

(2π)p−q det(Σ22)
exp

(
−1

2

(
x(2) − µ(2)

)>
Σ−122

(
x(2) − µ(2)

))
where

x11.2 =x(1) −Σ12Σ−122 x(2),

µ11.2 =µ(1) −Σ12Σ−122 µ
(2),

Σ11.2 =Σ11 −Σ12Σ−122 Σ21.
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Multivariate Normal Distribution (Conditional Distribution)

The marginal density of x(2) is

f (x(2)) = n(y(2) | µ(2),Σ22)

=
1√

(2π)p−q det(Σ22)
exp

(
−1

2

(
x(2) − µ(2)

)>
Σ−122

(
x(2) − µ(2)

))
.

Hence, the conditional density of x(1) given that x(2) is

f (x(1) | x(2)) =
f (x(1), x(2))

f (x(2))

=
1√

(2π)q det(Σ11.2)
exp

(
−1

2
(x11.2 − µ11.2)>Σ−111.2 (x11.2 − µ11.2)

)

Lecture 04 (Fudan University) MATH 620156 5 / 31



Multivariate Normal Distribution (Conditional Distribution)

The conditional density of x(1) given that x(2) is

f (x(1) | x(2)) =
f (x(1), x(2))

f (x(2))

=
1√

(2π)q det(Σ11.2)
exp

(
−1

2
(x11.2 − µ11.2)>Σ−111.2 (x11.2 − µ11.2)

)

Consider that x11.2 − µ11.2 = x(1) −
(
µ(1) + Σ12Σ−122 (x(2) − µ(2))

)
.

The density f (x(1) | x(2)) is a q-variate normal density with mean

E
[
x(1) | x(2)

]
= µ(1) + Σ12Σ−122 (x(2) − µ(2)) = ν(x(2))

and covariance matrix (not depend on x(2))

Cov
[
x(1) | x(2)

]
=E
[
(x(1) − ν(x(2)))(x(1) − ν(x(2)))> | x(2)

]
=Σ11.2 = Σ11 −Σ12Σ−122 Σ21 � Σ11.
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Multivariate Normal Distribution (Conditional Distribution)

The density f (x1, x2) can be thought of as a surface z = f (x1, x2) over the
x1, x2-plane.

If we intersect this surface with the plane x2 = c , we obtain a curve z = f (x1, c)
over the line x2 = c in the xl , x2-plane.

The ordinate of this curve is proportional to the conditional density of x1 given
x2 = c ; that is, it is proportional to the ordinate of the curve of a univariate
normal distribution.
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Correlation Coefficient

Recall that for random vector x = [x1, x2, . . . , xp]>, we define the
covariance matrix as

Σ =


σ11 σ12 . . . σ1p
σ21 σ22 . . . σ2p

...
...

. . .
...

σp1 σp2 . . . σpp

 ∈ Rp×p

and the correlation coefficient between xi and xj as (suppose Σ � 0)

ρij =
σij√
σii
√
σjj
.
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Partial Correlation Coefficient

Now consider the partition

x =

[
x(1)

x(2)

]
with x(1) ∈ Rq and x(2) ∈ Rp−q.

Let

Σ11.2 =


σ11·q+1,...,p σ12·q+1,...,p . . . σ1q·q+1,...,p

σ21·q+1,...,p σ22·q+1,...,p . . . σ2q·q+1,...,p
...

...
. . .

...
σq1·q+1,...,p σq2·q+1,...,p . . . σqq·q+1,...,p

 ∈ Rq×q.

We define

ρij ·q+1,...,p =
σij ·q+1,...,p√

σii ·q+1,...,p
√
σjj ·q+1,...,p

as the partial correlation between xi and xj holding xq+1, . . . , xp fixed.
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Multiple Correlation Coefficient

We again consider x ∼ Np(µ,Σ) such that

x =

[
x(1)

x(2)

]
, µ =

[
µ(1)

µ(2)

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
� 0.

Then, we study some properties of Bx(2), where

B = Σ12Σ−122

is the matrix of regression coefficients of x(1) on x(2).

The vector E
[
x(1) | x(2)

]
= µ(1) + B(x(2) − µ(2)) is called the regression

function.

Lecture 04 (Fudan University) MATH 620156 10 / 31



Multiple Correlation Coefficient

The vector

x(11.2) = x(1) − (µ(1) + B(x(2) − µ(2)))

is the vector of residuals of x(1) from its regression on x(2).

The components of x(11.2) are uncorrelated with the components of x(2)

since we have

x(11.2) = y(1) − E[y(1)],

such that [
y(1)

y(2)

]
=

[
I −Σ12Σ−122

0 I

] [
x(1)

x(2)

]
=

[
x(1) − Bx(2)

x(1)

]
.

Lecture 04 (Fudan University) MATH 620156 11 / 31



Multiple Correlation Coefficient

Theorem 1

For x ∼ Np(µ,Σ) and every vector α ∈ R(p−q), we have

Var
(
x
(11.2)
i

)
≤ Var

(
xi −α>x(2)

)
,

where x
(11.2)
i and xi are the i-th entry of x(11.2) and the i-th entry of x

respectively.

Observe that

E[xi ] = µi + α>
(
x(2) − µ(2)

)
,

which means

µi + β>(i)(x(2) − µ(2))

is the best linear predictor of xi in all functions of the form α>x(2) + c , the mean

squared error of the above is a minimum.
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Multiple Correlation Coefficient

The correlation of two variables z1 and z2 is defined as

Corr(z1, z2) =
Cov[z1, z2]√
Var[z1]Var[z2]

.

The maximum correlation between xi and the linear combination α>x(2) is
called the multiple correlation coefficient between xi and α>x(2).

Corollary 1

Under the setting of Theorem 1, prove that

Corr
[
xi ,β

>
(i)x

(2)
]
≥ Corr

[
xi ,α

>x(2)
]

for every α ∈ R(p−q).
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Characteristic Function

The characteristic function of a p-dimensional random vector x is

φ(t) = E
[
exp(i t>x)

]
defined for every real vector t ∈ Rp.

For the complex-valued function g(z) be written as

g(z) = g1(z) + i g2(z),

where g1(z) and g2(z) are real-valued, the expected value of g(z) is

E[g(z)] = E[g1(z)] + iE[g2(z)].
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Characteristic Function

Let x =

[
x(1)

x(2)

]
be a p-dimensional random vector. If x(1) and x(2) are

independent and g(x) = g (1)(x(1))g (2)(x(2)), then we have

E
[
g(x)

]
= E

[
g (1)(x(1))

]
E
[
g (2)(x(2))

]
.

If the components of x are mutually independent, then

E
[

exp(i t>x)
]

= E

 p∏
j=1

exp(i tjxj)

 .
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Characteristic Function

Theorem 2

The characteristic function of x distributed according to Np(µ,Σ) is

φ(t) = exp

(
i t>µ− 1

2
t>Σt

)
.

for every t ∈ Rp.

Sketch of the proof

1 The characteristic function of y ∼ Np(0, I) is φ0(t) = exp
(
−1

2t>t
)
.

2 For x ∼ Np(µ,Σ), we have x = Ay + µ such that Σ = AA>.

3 Using φ0(t) to present the characteristic function of x ∼ Np(µ,Σ).
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Characteristic Function

Theorem 2

The characteristic function of x distributed according to Np(µ,Σ) is

φ(t) = exp

(
i t>µ− 1

2
t>Σt

)
.

for every t ∈ Rp.

We can use this theorem to prove z = Dx ∼ N (Dµ,DΣD>) easily.
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Characteristic Function

The following theorem can be viewed as another definition of multivariate
normal distribution.

Theorem 3

If every linear combination of the components of a random vector y is
normally distributed, then y is normally distributed.

In other words, if the p-dimensional random vector y leads to the
univariate random variable

u>y

is normally distributed for any fixed u ∈ Rp, then y is normally distributed.
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Characteristic Function

Problem in Exam

Let x ∼ Np(µ1,Σ1), y ∼ Np(µ2,Σ2) and z = x + y. Suppose that x and
y are independent. Prove z ∼ Np(µ1 + µ2,Σ1 + Σ2).

Use characteristic function to avoid using density.
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Characteristic Function and Density

The characteristic function determines the density function uniquely (if the
density exists).

Theorem 4

If the p-dimensional random vector x has the density f (x) and the
characteristic function φ(t), then

f (x) =
1

(2π)p

∫ ∞
−∞
· · ·
∫ ∞
−∞

exp(−i t>x)φ(t) dt1 . . . dtp.

See the proof in Section 10.6 of “Cramer, H. (1946). Mathematical
Methods of Statistics. Princeton University Press”.
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Characteristic Function and Probability

If x does not have a density, the characteristic function uniquely defines
the probability of any continuity interval.

Theorem 5

Let {Fj(x)} be a sequence of cdfs, and let {φj(t)} be the sequence of
corresponding characteristic functions. A necessary and sufficient condition
for Fj(x) to converge to a cdf F (x) is that, for every t, φj(t) converges to
a limit φ(t) that is continuous at t = 0. When this condition is satisfied,
the limit φ(t) is identical with the characteristic function of the limiting
distribution F (x).

See the proof in Section 10.7 of “Cramer, H. (1946). Mathematical
Methods of Statistics. Princeton University Press”
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Characteristic Function and Moments

If the n-th moment of random variable x , denoted by E[xn], exists and is
finite, then its characteristic function is n times continuously differentiable
and

E[xn] =
1

in
dnφ(t)

dtn

∣∣∣∣∣
t=0

,

which is because of

dnφ(t)

dtn
=

dn

dtn
E [exp(i tx)]

=E
[
dn

dtn
exp(i tx)

]
=E [(i x)n exp(i tx)]

=in E [xn exp(i tx)] .
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Characteristic Function and Moments

For normal distributed random vector x ∼ Np(µ,Σ) and its characteristic
function φ(t) = exp

(
i t>µ− 1

2t>Σt
)
, we have

E[xh] =
1

i

dφ(t)

dth

∣∣∣∣∣
t=0

=
1

i

iµh −
p∑

j=1

σhj tj

φ(t)

∣∣∣∣∣
t=0

= µh

and

E[xhxj ] =
1

i2
∂2φ(t)

∂th ∂tj

∣∣∣∣∣
t=0

=
1

i2

((
−

p∑
k=1

σhktk + iµh

)
− σhj

)((
−

p∑
k=1

σkj tk + iµj

)
− σhj

)
φ(t)

∣∣∣∣∣
t=0

=σhj + µhµj .

Thus, we have

Var(xh) =E[xh − µh]2 = E[x2h ]− µ2
h = σhh,

Cov(xh, xj) =E[(xh − µh)(xj − µj)] = E[xhxj ]− µhµj = σhj .
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Characteristic Function and Moments

If all the moments of a distribution exist, then the cumulants are the
coefficients κ in

log φ(t) =
∞∑

s1=0

· · ·
∞∑

sp=0

κs1...sp
(it1)s1 . . . (itp)sp

s1! . . . sp!
.

In the case of the multivariate normal distribution, we have

κ100...0 = µ1, κ010...0 = µ2, . . . κ000...1 = µp,

and

κ200...0 = σ11, κ110...0 = σ12, . . . κ000...2 = σpp.

The cumulants for which
∑

si > 2 are 0.
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The Maximum Likelihood Estimators

Given a sample of (vector) observations from a p-variate (non-singular)
normal distribution, we ask for estimators of the mean vector µ and the
covariance matrix Σ of the distribution.

Suppose our sample of N observations on the x1, x2, . . . , xN , which are
distributed according to N (µ,Σ), where N > p. The likelihood function is

L =
N∏
α=1

n(xα | µ,Σ)

=
1

(2π)
pN
2 (det(Σ))

N
2

exp

[
−1

2

N∑
α=1

(xα − µ)>Σ−1(xα − µ)

]
.
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The Maximum Likelihood Estimators

The likelihood function is

L =
1

(2π)
pN
2 (det(Σ))

N
2

exp

[
−1

2

N∑
α=1

(xα − µ)>Σ−1(xα − µ)

]
.

The vectors x1, x2, . . . , xN are fixed at the sample values and L is a
function of µ and Σ.

The logarithm of the likelihood function is

ln L = −PN

2
ln 2π − N

2
ln (det(Σ))− 1

2

N∑
α=1

(xα − µ)>Σ−1(xα − µ).

Since ln L is an increasing function of L, the maximum likelihood
estimators of µ and Σ are the vector and the positive definite matrix that
maximize ln L.
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The Maximum Likelihood Estimators

Let the mean vector be

x̄ =
1

N

N∑
α=1

xα =



1

N

N∑
α=1

x1α

...

1

N

N∑
α=1

xpα


=

x̄1...
x̄p



where

xα =

x1α...
xpα

 and x̄i =
1

N

N∑
α=1

xiα.

Let the matrix of sums of squares and cross products of deviations about the
mean be

A =
1

N

N∑
α=1

(xα − x̄)(xα − x̄)>
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The Maximum Likelihood Estimators

Theorem 6

If x1, x2, . . . , xN constitute a sample from N (µ,Σ) with p < N, the
maximum likelihood estimators of µ and Σ are

µ̂ = x̄ =
1

N

N∑
α=1

xα and Σ̂ =
1

N

N∑
α=1

(xα − x̄)(xα − x̄)>

respectively.

Lemma 1

If D ∈ Rp×p is positive definite, the maximum of

f (G) = −N ln det(G)− tr(G−1D)

with respect to positive definite matrices G exists, occurs at G = 1
N D.
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The Maximum Likelihood Estimators

The maximum likelihood estimators of functions of the parameters are
those functions of the maximum likelihood estimators of the parameters.

Theorem 7

Let f (θ) be a real-valued function defined on a set S and let φ be a
single-valued function, with a single-valued inverse, on S to a set S∗. Let

g(θ∗) = f
(
φ−1(θ∗)

)
.

Then if f (θ) attains a maximum at θ = θ0, then g(θ∗) attains a
maximum at θ∗ = θ∗0 = φ(θ0). If the maximum of f (θ) at θ0 is unique,
so is the maximum of g(θ∗) at θ∗0.
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The Maximum Likelihood Estimators

Corollary 2

If on the basis of a given sample θ̂1, . . . , θ̂m are maximum likelihood
estimators of the parameters θ1, . . . , θm of a distribution, then
φ1(θ̂1, . . . , θ̂m), . . . , φm(θ̂1, . . . , θ̂m) are maximum likelihood estimator of
φ1(θ1, . . . , θm), . . . , φm(θ1, . . . , θm) if the transformation from θ1, . . . , θm
to φ1, . . . , φm is one-to-one. If the estimators of θ1, . . . , θm are unique,
then the estimators of φ1, . . . , φm are unique.

Corollary 3

If x1, . . . , xN constitutes a sample from N (µ,Σ), let ρij = σij/(σiσj).
Then the maximum likelihood estimator of ρij is

ρ̂ij =

∑N
α=1(xiα − x̄i )(xjα − x̄j)√∑N

α=1(xiα − x̄i )2
√∑N

α=1(xjα − x̄j)2
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The Maximum Likelihood Estimators

If φ : S → S∗ is not one-to-one, we let

φ−1(θ∗) = {θ : θ∗ = φ(θ)}.

and define (the induced likelihood function)

g(θ∗) = sup{f (θ) : θ∗ = φ(θ)}.

If θ = θ̂ maximize f (θ), then θ∗ = φ(θ̂) also maximize g(θ∗).
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