Multivariate Statistics

Lecture 02

Fudan University

Outline

(1) Joint Distributions

Outline

(1) Joint Distributions
(2) Marginal Distributions

Outline

(1) Joint Distributions
(2) Marginal Distributions
(3) Transformation of Variables

Outline

(1) Joint Distributions
(2) Marginal Distributions
(3) Transformation of Variables
(4) Random Matrix

Outline

(1) Joint Distributions
(2) Marginal Distributions
(3) Transformation of Variables
(4) Random Matrix
(5) Multivariate Normal Distribution

Outline

(1) Joint Distributions
(2) Marginal Distributions
(3) Transformation of Variables
4) Random Matrix

(5) Multivariate Normal Distribution

Joint Distributions (Two Variables)

(1) Consider two (real) random variables X and Y. Probabilities of events defined in terms of these variables can be obtained by operations involving the cumulative distribution function (cdf),

$$
F(x, y)=\operatorname{Pr}\{X \leq x, Y \leq y\}
$$

defined for every pair of real numbers (x, y).

Joint Distributions (Two Variables)

(1) Consider two (real) random variables X and Y. Probabilities of events defined in terms of these variables can be obtained by operations involving the cumulative distribution function (cdf),

$$
F(x, y)=\operatorname{Pr}\{X \leq x, Y \leq y\}
$$

defined for every pair of real numbers (x, y).
(2) We are interested in cases where $F(x, y)$ is absolutely continuous; this means the following partial derivative exists almost everywhere:

$$
\frac{\partial^{2} F(x, y)}{\partial x \partial y}=f(x, y)
$$

and we have

$$
F(x, y)=\int_{-\infty}^{y} \int_{-\infty}^{x} f(u, v) \mathrm{d} u \mathrm{~d} v
$$

Joint Distributions (Two Variables)

(1) Consider two (real) random variables X and Y. Probabilities of events defined in terms of these variables can be obtained by operations involving the cumulative distribution function (cdf),

$$
F(x, y)=\operatorname{Pr}\{X \leq x, Y \leq y\}
$$

defined for every pair of real numbers (x, y).
(2) We are interested in cases where $F(x, y)$ is absolutely continuous; this means the following partial derivative exists almost everywhere:

$$
\frac{\partial^{2} F(x, y)}{\partial x \partial y}=f(x, y)
$$

and we have

$$
F(x, y)=\int_{-\infty}^{y} \int_{-\infty}^{x} f(u, v) \mathrm{d} u \mathrm{~d} v
$$

(3) The nonnegative function $f(x, y)$ is called the probability density function (pdf).

Joint Distributions (Two Variables)

The pair of random variables (X, Y) defines a random point in a plane. The probability that (X, Y) falls in a rectangle is

$$
\begin{aligned}
& \operatorname{Pr}\{x \leq X \leq x+\Delta x, y \leq Y \leq y+\Delta y\} \\
= & F(x+\Delta x, y+\Delta y)-F(x+\Delta x, y)-F(x, y+\Delta y)+F(x, y) \\
= & \int_{y}^{y+\Delta x} \int_{x}^{x+\Delta y} f(u, v) \mathrm{d} u \mathrm{~d} v,
\end{aligned}
$$

where $\Delta x>0$ and $\Delta y>0$.

Joint Distributions (Two Variables)

The pair of random variables (X, Y) defines a random point in a plane. The probability that (X, Y) falls in a rectangle is

$$
\begin{aligned}
& \operatorname{Pr}\{x \leq X \leq x+\Delta x, y \leq Y \leq y+\Delta y\} \\
= & F(x+\Delta x, y+\Delta y)-F(x+\Delta x, y)-F(x, y+\Delta y)+F(x, y) \\
= & \int_{y}^{y+\Delta x} \int_{x}^{x+\Delta y} f(u, v) \mathrm{d} u \mathrm{~d} v,
\end{aligned}
$$

where $\Delta x>0$ and $\Delta y>0$.
The probability of the random point (X, Y) falling in any set \mathcal{E} for which the following integral is defined (that is, any measurable set \mathcal{E}) is

$$
\operatorname{Pr}\{(X, Y) \in \mathcal{E}\}=\iint_{\mathcal{E}} f(u, v) \mathrm{d} u \mathrm{~d} v
$$

Joint Distributions (Two Variables)

If $f(x, y)$ is continuous in both two variables, the probability element $f(x, y) \Delta x \Delta y$ is approximately the probability that X falls between x and $x+\Delta x$ and Y falls between y and $y+\Delta y$ for small Δx and Δy since

$$
\begin{aligned}
& \operatorname{Pr}\{x \leq X \leq x+\Delta x, y \leq Y \leq y+\Delta y\} \\
= & \int_{y}^{y+\Delta x} \int_{x}^{x+\Delta y} f(u, v) \mathrm{d} u \mathrm{~d} v \\
= & f\left(x_{0}, y_{0}\right) \Delta x \Delta y
\end{aligned}
$$

for some x_{0}, y_{0} such that $x \leq x_{0} \leq x+\Delta x, y \leq y_{0} \leq y+\Delta y$ by the mean value theorem. The continuity of f means $f\left(x_{0}, y_{0}\right) \Delta x \Delta y$ is approximately $f(x, y) \Delta x \Delta y$.

Joint Distributions (p Variables)

The cumulative distribution function of p random variables $X_{1}, \ldots X_{p}$ is

$$
F\left(x_{1}, \ldots, x_{p}\right)=\operatorname{Pr}\left\{X_{1} \leq x_{1}, \ldots, X_{p} \leq x_{p}\right\}
$$

If $F\left(x_{1}, \ldots, x_{p}\right)$ is absolutely continuous, its density function is

$$
\frac{\partial^{p} F\left(x_{1}, \ldots, x_{p}\right)}{\partial x_{1} \ldots \partial x_{p}}=f\left(x_{1}, \ldots, x_{p}\right)
$$

(almost everywhere), and

$$
F\left(x_{1}, \ldots, x_{p}\right)=\int_{-\infty}^{x_{p}} \ldots \int_{-\infty}^{x_{1}} f\left(u_{1}, \ldots, u_{p}\right) \mathrm{d} u_{1} \ldots \mathrm{~d} u_{p}
$$

Joint Distributions (p Variables)

The probability of falling in any (measurable) set \mathcal{R} in the p-dimensional Euclidean space is

$$
\operatorname{Pr}\left\{\left(X_{1}, \ldots, X_{p}\right) \in \mathcal{R}\right\}=\int \ldots \int_{\mathcal{R}} f\left(x_{1}, \ldots, x_{p}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{p}
$$

The probability element

$$
f\left(x_{1}, \ldots, x_{p}\right) \Delta x_{1} \ldots \Delta x_{p}
$$

is approximately the probability

$$
\operatorname{Pr}\left\{x_{1} \leq X_{1} \leq x_{1}+\Delta_{1}, \ldots, x_{p} \leq X_{p} \leq x_{p}+\Delta_{p}\right\}
$$

if $f\left(x_{1}, \ldots, x_{p}\right)$ is continuous.

Joint Moments

The joint moments of the joint distribution of random variables X_{1}, \ldots, X_{p} are defined as integers

$$
\mathbb{E}\left[X_{1}^{h_{1}} \cdots X_{p}^{h_{p}}\right]=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} x_{1}^{h_{1}} \cdots x_{p}^{h_{p}} f\left(x_{1}, \ldots, x_{p}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{p}
$$

where $k_{i} \geq 0$ for all $i=1, \ldots, p$.

Outline

(1) Joint Distributions
(2) Marginal Distributions
(3) Transformation of Variables
4) Random Matrix

(5) Multivariate Normal Distribution

Marginal Distributions (two variables)

Given the cdf of two random variables X, Y as being $F(x, y)$, the marginal cdf of X is

$$
F(x)=\operatorname{Pr}\{X \leq x\}=\operatorname{Pr}\{X \leq x, Y \leq \infty\}=F(x, \infty)
$$

Clearly, we have

$$
F(x)=\int_{-\infty}^{x}\left(\int_{-\infty}^{\infty} f(u, v) \mathrm{d} v\right) \mathrm{d} u
$$

We call

$$
f(u)=\int_{-\infty}^{\infty} f(u, v) \mathrm{d} v
$$

say, the marginal density of X. Then

$$
F(x)=\int_{-\infty}^{x} f(u) \mathrm{d} u
$$

Marginal Distributions (two variables)

In a similar fashion we define $G(y)$ as the marginal cdf of Y and $g(y)$ as marginal density of Y, that is

$$
G(y)=\int_{-\infty}^{y}\left(\int_{-\infty}^{\infty} f(u, v) \mathrm{d} u\right) \mathrm{d} v .
$$

and

$$
g(v)=\int_{-\infty}^{\infty} f(u, v) \mathrm{d} u
$$

Marginal Distributions (p variables)

Given $F\left(x_{1}, \ldots, x_{p}\right)$ as the cdf of X_{1}, \ldots, X_{p}, the marginal cdf of some of X_{1}, \ldots, X_{p} say, of $X_{1}, \ldots, X_{r}(r<p)$, is

$$
\begin{aligned}
F\left(X_{1}, \ldots, X_{r}\right) & =\operatorname{Pr}\left\{X_{1} \leq x_{1}, \ldots, X_{r} \leq x_{r}\right\} \\
& =\operatorname{Pr}\left\{X_{1} \leq x_{1}, \ldots, X_{r} \leq x_{r}, X_{r+1} \leq \infty, \ldots, X_{p} \leq \infty\right\} \\
& =F\left(x_{1}, \ldots, x_{r}, \infty, \ldots, \infty\right)
\end{aligned}
$$

The marginal density of X_{1}, \ldots, X_{r} is

$$
\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f\left(x_{1}, \ldots, x_{r}, u_{r+1} \ldots, u_{p}\right) \mathrm{d} u_{r+1} \ldots \mathrm{~d} u_{p}
$$

The marginal distribution and density of any other subset of X_{1}, \ldots, X_{p} are obtained in the obviously similar fashion.

Joint Moments

The joint moments of a subset of variables can be computed from the marginal distribution; for example,

$$
\begin{aligned}
& \mathbb{E}\left[X_{1}^{h_{1}} \ldots X_{r}^{h_{r}}\right] \\
= & \mathbb{E}\left[X_{1}^{h_{1}} \ldots X_{r}^{h_{r}} X_{r+1}^{0} \ldots X_{p}^{0}\right] \\
= & \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} x_{1}^{h_{1}} \cdots x_{r}^{h_{r}} f\left(x_{1}, \ldots, x_{p}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{p} \\
= & \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} x_{1}^{h_{1}} \cdots x_{r}^{h_{r}}\left[\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f\left(x_{1} \ldots, x_{p}\right) \mathrm{d} x_{r+1} \ldots \mathrm{~d} x_{p}\right] \mathrm{d} x_{1} \ldots \mathrm{~d} x_{r} \\
= & \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} x_{1}^{h_{1}} \cdots x_{r}^{h_{r}} f\left(x_{1}, \ldots, x_{r}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{r} .
\end{aligned}
$$

Statistical Independence

Definition

Two random variables X, Y with $\operatorname{cdf} F(x, y)$ are said to be independent if

$$
F(x, y)=F(x) G(y)
$$

where $F(x)$ is the marginal cdf of X and $G(y)$ is the marginal cdf of Y.

Statistical Independence

Definition

Two random variables X, Y with $\operatorname{cdf} F(x, y)$ are said to be independent if

$$
F(x, y)=F(x) G(y)
$$

where $F(x)$ is the marginal cdf of X and $G(y)$ is the marginal cdf of Y.

- Two random variables X, Y with $\operatorname{cdf} F(x, y)$ are independent, then the density of X, Y can be written as

$$
f(x, y)=f(x) g(y)
$$

where $f(x)$ and $g(y)$ are the marginal densities of X and Y respectively.

- Conversely, if $f(x, y)=f(x) g(y)$, then $F(x, y)=F(x) G(y)$.

Statistical Independence

The statistical independence of X and Y implies

$$
\begin{aligned}
& \operatorname{Pr}\left\{x_{1} \leq X \leq x_{2}, y_{1} \leq Y \leq y_{2}\right\} \\
= & \int_{y_{1}}^{y_{2}} \int_{x_{1}}^{x_{2}} f(u, v) \mathrm{d} u \mathrm{~d} v \\
= & \int_{y_{1}}^{y_{2}} f(u) \mathrm{d} u \int_{x_{1}}^{x_{2}} g(v) \mathrm{d} v \\
= & \operatorname{Pr}\left\{x_{1} \leq X \leq x_{2}\right\} \operatorname{Pr}\left\{y_{1} \leq Y \leq y_{2}\right\} .
\end{aligned}
$$

Definition

We say X and Y are uncorrelated if

$$
\begin{aligned}
& \operatorname{Cov}(X, Y) \triangleq \mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]=0 \\
\Longleftrightarrow & \mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y] .
\end{aligned}
$$

Independent \neq Uncorrelated

Note that
X are Y are independent implies X are Y uncorrelated.
However,
X are Y are uncorrelated do NOT implies X are Y are independent.

Mutually Independence

Definition

If the cdf of X_{1}, \ldots, X_{p} is $F\left(x_{1}, \ldots, x_{p}\right)$, the set of random variables is said to be mutually independent if

$$
F\left(x_{1}, \ldots, x_{p}\right)=F_{1}\left(x_{1}\right) \ldots F\left(x_{p}\right)
$$

where $F_{i}\left(x_{i}\right)$ is the marginal cdf of $X_{i}, i=1, \ldots, p$.

Definition

The set X_{1}, \ldots, X_{r} is said to be independent of the set X_{r+1}, \ldots, X_{p} if

$$
F\left(x_{1}, \ldots, X_{p}\right)=F\left(x_{1}, \ldots, x_{r}, \infty, \ldots, \infty\right) F\left(\infty, \ldots, \infty, x_{r+1}, \ldots, x_{p}\right)
$$

Conditional Distributions

If A and B are two events such that the probability of A and B occurring simultaneously is $P(A B)$ and the probability of B occurring is $P(B)>0$, then the conditional probability of A occurring given that B has occurred is

$$
\frac{P(A B)}{P(B)}
$$

Conditional Distributions

Suppose the event A is X falling in the $\left[x_{1}, x_{2}\right]$ and the event B is Y falling in $\left[y_{1}, y_{2}\right]$. Then the conditional probability that X falls in $\left[x_{1}, x_{2}\right]$, given that Y falls in $\left[y_{1}, y_{2}\right]$, is

$$
\begin{aligned}
& \operatorname{Pr}\left\{x_{1} \leq X \leq x_{2} \mid y_{1} \leq Y \leq y_{2}\right\} \\
= & \frac{\operatorname{Pr}\left\{x_{1} \leq X \leq x_{2}, y_{1} \leq Y \leq y_{2}\right\}}{\operatorname{Pr}\left\{y_{1} \leq Y \leq y_{2}\right\}} \\
= & \frac{\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} f(u, v) \mathrm{d} v \mathrm{~d} u}{\int_{y_{1}}^{y_{2}} g(v) \mathrm{d} v} .
\end{aligned}
$$

Conditional Distributions

For y such that $g(y)>0$, we define $\operatorname{Pr}\left\{x_{1} \leq X \leq x_{2} \mid Y=y\right\}$ as the probability that X lies between x_{1} and x_{2} given that Y is y. Then

$$
\operatorname{Pr}\left\{x_{1} \leq X \leq x_{2} \mid Y=y\right\}=\int_{x_{1}}^{x_{2}} f(u \mid y) \mathrm{d} u
$$

where $f(u \mid y)=\frac{f(u, y)}{g(y)}$.
For given $y, f(\cdot \mid y)$ is a density function and is called the conditional density of X given y.

If X and Y are independent, we have $f(x \mid y)=f(x)$.

Conditional Distributions

In the general case of X_{1}, \ldots, X_{p} with $\operatorname{cdf} F\left(X_{1}, \ldots, X_{p}\right)$, the conditional density of X_{1}, \ldots, X_{r}, given $X_{r+1}=x_{r+1}, \ldots, X_{p}=x_{p}$ is

$$
\frac{f\left(x_{1}, \ldots, x_{p}\right)}{\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f\left(u_{1}, \ldots, u_{r}, x_{r+1}, \ldots, x_{p}\right)} \mathrm{d} u_{1} \cdots \mathrm{~d} u_{r} .
$$

Outline

(1) Joint Distributions

(2) Marginal Distributions
(3) Transformation of Variables

4. Random Matrix

5 Multivariate Normal Distribution

Transformation of Variables

Let the density of p dimensional random vector $\mathbf{x}=\left[x_{1}, \ldots, x_{p}\right]^{\top}$ be $f(\mathbf{x})$.
Consider the random vector p dimensional random vector $\mathbf{y}=\left[y_{1}, \ldots, y_{p}\right]^{\top}$ such that $y_{i}=u_{i}(\mathbf{x})$ for $i=1, \ldots, p$. Let the density function of \mathbf{y} be $g(\mathbf{y})$.

Assume the transformation $\mathbf{u}(\mathbf{x})=\left[u_{1}(\mathbf{x}), \ldots, u_{p}(\mathbf{x})\right]^{\top}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ from the space of x to the space of y is smooth and one-to-one.

Then we have $f(\mathbf{x})=g(\mathbf{u}(\mathbf{x}))|\operatorname{det}(\mathbf{J}(\mathbf{x}))|$ where

$$
\mathbf{J}(\mathbf{x})=\left[\begin{array}{cccc}
\frac{\partial u_{1}(\mathbf{x})}{\partial x_{1}} & \frac{\partial u_{1}(\mathbf{x})}{x_{2}} & \cdots & \frac{\partial u_{1}(\mathbf{x})}{\partial x_{p}} \\
\frac{\partial u_{2}(\mathbf{x})}{\partial x_{1}} & \frac{\partial u_{2}(\mathbf{x})}{\partial x_{2}} & \cdots & \frac{\partial u_{2}(\mathbf{x})}{\partial x_{p}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial u_{p}(\mathbf{x})}{\partial x_{1}} & \frac{\partial u_{p}(\mathbf{x})}{\partial x_{2}} & \cdots & \frac{\partial u_{p}(\mathbf{x})}{\partial x_{p}}
\end{array}\right] .
$$

Transformation of Variables

Similarly, we also have $g(\mathbf{y})=f\left(\mathbf{u}^{-1}(\mathbf{y})\right)\left|\operatorname{det}\left(\mathbf{J}^{-1}(\mathbf{y})\right)\right|$ where

$$
\mathbf{J}^{-1}(\mathbf{y})=\left[\begin{array}{cccc}
\frac{\partial u_{1}^{-1}(\mathbf{y})}{\partial y_{1}} & \frac{\partial u_{1}^{-1}(\mathbf{y})}{\partial y_{2}} & \cdots & \frac{\partial u_{1}^{-1}(\mathbf{y})}{\partial y_{p}} \\
\frac{\partial u_{2}^{-1}(\mathbf{y})}{\partial y_{1}} & \frac{\partial u_{2}^{-1}(\mathbf{y})}{\partial y_{2}} & \cdots & \frac{\partial u_{2}^{-1}(\mathbf{y})}{\partial y_{p}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial u_{p}^{-1}(\mathbf{y})}{\partial y_{1}} & \frac{\partial u_{p}^{-1}(\mathbf{y})}{\partial y_{2}} & \cdots & \frac{\partial u_{p}^{-1}(\mathbf{y})}{\partial y_{p}}
\end{array}\right] .
$$

Outline

(1) Joint Distributions

(2) Marginal Distributions

(3) Transformation of Variables
4. Random Matrix

(5) Multivariate Normal Distribution

Random Matrix

A random matrix

$$
\mathbf{Z}=\left[\begin{array}{cccc}
z_{11} & z_{12} & \ldots & z_{1 n} \\
z_{21} & z_{22} & \ldots & z_{2 n} \\
\vdots & \ddots & \ldots & \vdots \\
z_{m 1} & z_{m 2} & \ldots & z_{m n}
\end{array}\right] \in \mathbb{R}^{m \times n}
$$

is a matrix of random variables $z_{11}, \ldots, z_{m n}$.

Random Matrix

We define

$$
\mathbb{E}[\mathbf{Z}]=\left[\begin{array}{cccc}
\mathbb{E}\left[z_{11}\right] & \mathbb{E}\left[z_{12}\right] & \ldots & \mathbb{E}\left[z_{1 n}\right] \\
\mathbb{E}\left[z_{21}\right] & \mathbb{E}\left[z_{22}\right] & \ldots & \mathbb{E}\left[z_{2 n}\right] \\
\vdots & \ddots & \ldots & \vdots \\
\mathbb{E}\left[z_{m 1}\right] & \mathbb{E}\left[z_{m 2}\right] & \ldots & \mathbb{E}\left[z_{m n}\right] .
\end{array}\right] \in \mathbb{R}^{m \times n}
$$

Random Vector and Mean Vector

For random vector

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{p}
\end{array}\right] \in \mathbb{R}^{p},
$$

the expected value

$$
\mathbb{E}[\mathbf{x}]=\left[\begin{array}{c}
\mathbb{E}\left[x_{1}\right] \\
\mathbb{E}\left[x_{2}\right] \\
\vdots \\
\mathbb{E}\left[x_{p}\right]
\end{array}\right] \in \mathbb{R}^{p},
$$

is the mean or mean vector of \mathbf{x}.
We shall usually denote the mean vector $\mathbb{E}[\mathbf{x}]$ by $\boldsymbol{\mu}$.

Random Vector and Covariance Matrix

For random vector $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{p}\end{array}\right]$ and its mean vector $\boldsymbol{\mu}=\left[\begin{array}{c}\mu_{1} \\ \mu_{2} \\ \vdots \\ \mu_{p}\end{array}\right]$, the expected value of the random matrix $(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\top}$ is

$$
\operatorname{Cov}(\mathbf{x})=\mathbb{E}\left[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\top}\right]
$$

the covariance or covariance matrix of \mathbf{x}.
(1) The i-th diagonal element of this matrix, $\mathbb{E}\left[\left(x_{i}-\mu_{i}\right)^{2}\right]$, is the variance of x_{i}.
(2) The i, j-th off-diagonal element $(i \neq j), \mathbb{E}\left[\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)\right]$ is the covariance of x_{i} and x_{j}.

Random Vector and Covariance Matrix

Note that

$$
\begin{aligned}
\operatorname{Cov}(\mathbf{x}) & =\mathbb{E}\left[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\top}\right] \\
& =\mathbb{E}\left[\mathbf{x x}^{\top}-\boldsymbol{\mu} \mathbf{x}^{\top}-\mathbf{x} \boldsymbol{\mu}^{\top}+\boldsymbol{\mu} \boldsymbol{\mu}^{\top}\right] \\
& =\mathbb{E}\left[\mathbf{x} \mathbf{x}^{\top}\right]-\mathbb{E}\left[\boldsymbol{\mu} \mathbf{x}^{\top}\right]-\mathbb{E}\left[\mathbf{x} \boldsymbol{\mu}^{\top}\right]+\mathbb{E}\left[\boldsymbol{\mu} \boldsymbol{\mu}^{\top}\right] \\
& =\mathbb{E}\left[\mathbf{x} \mathbf{x}^{\top}\right]-\boldsymbol{\mu} \mathbb{E}\left[\mathbf{x}^{\top}\right]-\mathbb{E}[\mathbf{x}] \boldsymbol{\mu}^{\top}+\boldsymbol{\mu} \boldsymbol{\mu}^{\top} \\
& =\mathbb{E}\left[\mathbf{x x}^{\top}\right]-\boldsymbol{\mu} \boldsymbol{\mu}^{\top}-\boldsymbol{\mu} \boldsymbol{\mu}^{\top}+\boldsymbol{\mu} \boldsymbol{\mu}^{\top} \\
& =\mathbb{E}\left[\mathbf{x x}^{\top}\right]-\boldsymbol{\mu} \boldsymbol{\mu}^{\top},
\end{aligned}
$$

where we have used the following lemma:

Lemma

If \mathbf{Z} is an $m \times n$ random matrix, \mathbf{D} is a fixed $I \times m$ real matrix, \mathbf{E} is a fixed $n \times q$ real matrix, and \mathbf{F} is a fixed $I \times q$ real matrix, then

$$
\mathbb{E}[\mathbf{D Z E}+\mathbf{F}]=\mathbf{D} \mathbb{E}[\mathbf{Z}] \mathbf{E}+\mathbf{F}
$$

Outline

(1) Joint Distributions

(2) Marginal Distributions

(3) Transformation of Variables
4) Random Matrix
(5) Multivariate Normal Distribution

Univariate Normal Distribution

A random variable X is normally distributed with mean μ and standard deviation $\sigma>0$ can be written in the following notation

$$
X \sim \mathcal{N}(\mu, \sigma)
$$

The probability density function of univariate normal distribution is

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

The standard normal distribution is a normal distribution with a mean of 0 and standard deviation of 1 .

The Central Limit Theorem

The sum of many random variables will have an approximately normal distribution.

Let X_{1}, \ldots, X_{n} be independent and identically distributed random variables with the same arbitrary distribution, mean μ, and variance σ^{2}.

Let $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, then the random variable

$$
Z=\lim _{n \rightarrow \infty} \sqrt{n}\left(\frac{\bar{X}_{n}-\mu}{\sigma}\right)
$$

is a standard normal distribution.

What about multivariate case?

Normal Distribution

正态分布

正末分布

Multivariate Normal Distribution

The multivariate normal distribution of a p-dimensional random vector $\mathbf{x}=\left[x_{1}, \ldots, x_{p}\right]^{\top}$ can be written in the following notation:

$$
\mathbf{x} \sim \mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})
$$

or to make it explicitly known that \mathbf{x} is p-dimensional.

$$
\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})
$$

with p-dimensional mean vector

$$
\boldsymbol{\mu}=\mathbb{E}[\mathbf{x}]=\left[\begin{array}{c}
\mathbb{E}\left[x_{1}\right] \\
\vdots \\
\mathbb{E}\left[x_{p}\right]
\end{array}\right] \in \mathbb{R}^{p}
$$

and covariance matrix

$$
\boldsymbol{\Sigma}=\mathbb{E}\left[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\top}\right] \in \mathbb{R}^{p \times p} .
$$

Multivariate Normal Distribution

The density function of univariate normal distribution is

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

where μ is the mean and σ^{2} is the variance with $\sigma>0$.

The density function of non-singular p-dimensional multivariate normal distribution is

$$
f(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{p} \operatorname{det}(\boldsymbol{\Sigma})}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

where $\boldsymbol{\mu} \in \mathbb{R}^{p}$ is the mean and $\boldsymbol{\Sigma} \succ \mathbf{0}$ is the $p \times p$ covariance matrix.

Multivariate Normal Distribution

The density function of non-singular p-dimensional multivariate normal distribution is

$$
f(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{p} \operatorname{det}(\boldsymbol{\Sigma})}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

where $\boldsymbol{\mu} \in \mathbb{R}^{p}$ is the mean and $\boldsymbol{\Sigma} \succ \mathbf{0}$ is the $p \times p$ covariance matrix.

When the covariance matrix $\boldsymbol{\Sigma}$ is singular, we call the distribution is singular (degenerate) normal distribution and we cannot write its density function.

We first focus on the case of $\boldsymbol{\Sigma} \succ \mathbf{0}$.

How to obtain the pdf of multivariate normal distribution?

We generalize the form of pdf for univariate normal distribution

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

to the multivariate case

$$
f(\mathbf{x})=K \exp \left(-\frac{1}{2}(\mathbf{x}-\mathbf{b})^{\top} \mathbf{A}(\mathbf{x}-\mathbf{b})\right),
$$

where \mathbf{A} is symmetric positive definite.
We can verify that if $\mathbb{E}[\mathbf{x}]=\boldsymbol{\mu}$ and $\operatorname{Cov}[\mathbf{x}]=\boldsymbol{\Sigma}$, then

$$
K=\frac{1}{\sqrt{(2 \pi)^{p} \operatorname{det}(\boldsymbol{\Sigma})}}, \quad \mathbf{b}=\boldsymbol{\mu}, \quad \mathbf{A}=\boldsymbol{\Sigma}^{-1}
$$

How to obtain the pdf of multivariate normal distribution?

We first show

$$
K=\frac{\sqrt{\operatorname{det}(\mathbf{A})}}{\sqrt{(2 \pi)^{p}}}
$$

by considering the random vector

$$
\mathbf{y}=\mathbf{C}^{-1}(\mathbf{x}-\mathbf{b}) \in \mathbb{R}^{p}
$$

where $\mathbf{C} \in \mathbb{R}^{p \times p}$ satisfies $\mathbf{C}^{\top} \mathbf{A C}=\mathbf{I}$.

How to obtain the pdf of multivariate normal distribution?
Then, we show $\mathbf{b}=\boldsymbol{\mu}$ and $\mathbf{A}=\boldsymbol{\Sigma}^{-1}$ by using the following lemma.

Lemma

(1) If \mathbf{Z} is an $m \times n$ random matrix, \mathbf{D} is an $I \times m$ real matrix, \mathbf{E} is an $n \times q$ real matrix, and \mathbf{F} is an $I \times q$ real matrix, then

$$
\mathbb{E}[\mathbf{D Z E}+\mathbf{F}]=\mathbf{D E}[\mathbf{Z}] \mathbf{E}+\mathbf{F}
$$

(2) If $\mathbf{y}=\mathbf{D} \mathbf{x}+\mathbf{f} \in \mathbb{R}^{I}$, where \mathbf{D} is an $I \times m$ real matrix, $\mathbf{x} \in \mathbb{R}^{m}$ is a random vector, then

$$
\mathbb{E}[\mathbf{y}]=\mathbf{D} \mathbb{E}[\mathbf{x}]+\mathbf{f}
$$

and

$$
\operatorname{Cov}[\mathbf{y}]=\mathbf{D} \operatorname{Cov}[\mathbf{x}] \mathbf{D}^{\top} .
$$

Multivariate Normal Distribution

If the density of a p-dimensional random vector \mathbf{x} is

$$
K \exp \left(-\frac{1}{2}(\mathbf{x}-\mathbf{b})^{\top} \mathbf{A}(\mathbf{x}-\mathbf{b})\right),
$$

where $\mathbf{A} \in \mathbb{R}^{p \times p}$ is symmetric positive definite. Then the expectation of \mathbf{x} is \mathbf{b} and its covariance matrix is \mathbf{A}^{-1}.

Conversely, given a vector $\boldsymbol{\mu} \in \mathbb{R}^{p}$ and a positive definite matrix $\boldsymbol{\Sigma} \in \mathbb{R}^{p \times p}$, there is a multivariate normal density

$$
n(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{\sqrt{(2 \pi)^{p} \operatorname{det}(\boldsymbol{\Sigma})}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

Correlation Coefficient

We consider the bivariate normal distribution $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \quad \boldsymbol{\mu}=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right] \quad \text { and } \quad \boldsymbol{\Sigma}=\left[\begin{array}{ll}
\sigma_{11} & \sigma_{12} \\
\sigma_{21} & \sigma_{22}
\end{array}\right] .
$$

The covariance matrix can be written as

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{1} \sigma_{2} \rho \\
\sigma_{1} \sigma_{2} \rho & \sigma_{2}^{2}
\end{array}\right]
$$

where σ_{1}^{2} is the variance of x_{1}, σ_{2}^{2} is the variance of x_{2} and ρ is the correlation between x_{1} and x_{2}.
We can verify that $-1<\rho<1$ if $\boldsymbol{\Sigma} \succ \mathbf{0}$ and

$$
\boldsymbol{\Sigma}^{-1}=\frac{1}{1-\rho^{2}}\left[\begin{array}{cc}
\frac{1}{\sigma_{1}^{2}} & -\frac{\rho}{\sigma_{1} \sigma_{2}} \\
-\frac{\rho}{\sigma_{1} \sigma_{2}} & \frac{1}{\sigma_{2}^{2}}
\end{array}\right]
$$

Correlation Coefficient

The density of such normal distribution is constant on ellipsoids

$$
(\mathbf{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})=c
$$

for every positive value of c.
We transform coordinates by $y_{i}=\left(x_{i}-\mu_{i}\right) / \sigma_{i}$ for $i=1,2$, then

$$
\frac{1}{1-\rho^{2}}\left(y_{1}^{2}-2 \rho y_{1} y_{2}+y_{2}^{2}\right)=c
$$

Correlation Coefficient

We transform coordinates by $y_{i}=\left(x_{i}-\mu_{i}\right) / \sigma_{i}$ for $i=1,2$, then

$$
\frac{1}{1-\rho^{2}}\left(y_{1}^{2}-2 \rho y_{1} y_{2}+y_{2}^{2}\right)=c
$$

The intercepts on the y_{1}-axis and y_{2}-axis are equal.
(1) If $\rho>0$, the major axis is along the 45° line with a length of $2 \sqrt{c(1+\rho)}$, and the minor axis has a length of $2 \sqrt{c(1-\rho)}$.
(2) If $\rho<0$, the major axis is along the 135° line with a length of $2 \sqrt{c(1-\rho)}$, and the minor axis has a length of $2 \sqrt{c(1+\rho)}$.

