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. . . . . .

Joint Distributions (Two Variables)

...1 Consider two (real) random variables X and Y . Probabilities of
events defined in terms of these variables can be obtained by
operations involving the cumulative distribution function (cdf),

F (x , y) = Pr{X ≤ x ,Y ≤ y}.

defined for every pair of real numbers (x , y).

...2 We are interested in cases where F (x , y) is absolutely continuous; this
means the following partial derivative exists almost everywhere:

∂2F (x , y)

∂x∂y
= f (x , y)

and we have

F (x , y) =

∫ y

−∞

∫ x

−∞
f (u, v)du dv

...3 The nonnegative function f (x , y) is called the probability density
function (pdf).

Lecture 02 (Fudan University) MATH 620156 3 / 40



. . . . . .

Joint Distributions (Two Variables)

...1 Consider two (real) random variables X and Y . Probabilities of
events defined in terms of these variables can be obtained by
operations involving the cumulative distribution function (cdf),

F (x , y) = Pr{X ≤ x ,Y ≤ y}.

defined for every pair of real numbers (x , y).
...2 We are interested in cases where F (x , y) is absolutely continuous; this
means the following partial derivative exists almost everywhere:

∂2F (x , y)

∂x∂y
= f (x , y)

and we have

F (x , y) =

∫ y

−∞

∫ x

−∞
f (u, v)du dv

...3 The nonnegative function f (x , y) is called the probability density
function (pdf).

Lecture 02 (Fudan University) MATH 620156 3 / 40



. . . . . .

Joint Distributions (Two Variables)

...1 Consider two (real) random variables X and Y . Probabilities of
events defined in terms of these variables can be obtained by
operations involving the cumulative distribution function (cdf),

F (x , y) = Pr{X ≤ x ,Y ≤ y}.

defined for every pair of real numbers (x , y).
...2 We are interested in cases where F (x , y) is absolutely continuous; this
means the following partial derivative exists almost everywhere:

∂2F (x , y)

∂x∂y
= f (x , y)

and we have

F (x , y) =

∫ y

−∞

∫ x

−∞
f (u, v)du dv

...3 The nonnegative function f (x , y) is called the probability density
function (pdf).

Lecture 02 (Fudan University) MATH 620156 3 / 40



. . . . . .

Joint Distributions (Two Variables)

The pair of random variables (X ,Y ) defines a random point in a plane.
The probability that (X ,Y ) falls in a rectangle is

Pr{x ≤ X ≤ x +∆x , y ≤ Y ≤ y +∆y}
=F (x +∆x , y +∆y)− F (x +∆x , y)− F (x , y +∆y) + F (x , y)

=

∫ y+∆x

y

∫ x+∆y

x
f (u, v)du dv ,

where ∆x > 0 and ∆y > 0.

The probability of the random point (X ,Y ) falling in any set E for which
the following integral is defined (that is, any measurable set E) is

Pr {(X ,Y ) ∈ E} =

∫∫
E
f (u, v)du dv .
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. . . . . .

Joint Distributions (Two Variables)

If f (x , y) is continuous in both two variables, the probability element
f (x , y)∆x∆y is approximately the probability that X falls between x and
x +∆x and Y falls between y and y +∆y for small ∆x and ∆y since

Pr{x ≤ X ≤ x +∆x , y ≤ Y ≤ y +∆y}

=

∫ y+∆x

y

∫ x+∆y

x
f (u, v)du dv

=f (x0, y0)∆x∆y

for some x0, y0 such that x ≤ x0 ≤ x +∆x , y ≤ y0 ≤ y +∆y by the
mean value theorem. The continuity of f means f (x0, y0)∆x∆y is
approximately f (x , y)∆x∆y .
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. . . . . .

Joint Distributions (p Variables)

The cumulative distribution function of p random variables X1, . . .Xp is

F (x1, . . . , xp) = Pr{X1 ≤ x1, . . . ,Xp ≤ xp}.

If F (x1, . . . , xp) is absolutely continuous, its density function is

∂pF (x1, . . . , xp)

∂x1 . . . ∂xp
= f (x1, . . . , xp)

(almost everywhere), and

F (x1, . . . , xp) =

∫ xp

−∞
. . .

∫ x1

−∞
f (u1, . . . , up)du1 . . . dup.
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. . . . . .

Joint Distributions (p Variables)

The probability of falling in any (measurable) set R in the p-dimensional
Euclidean space is

Pr{(X1, . . . ,Xp) ∈ R} =

∫
. . .

∫
R
f (x1, . . . , xp)dx1 . . . dxp.

The probability element

f (x1, . . . , xp)∆x1 . . .∆xp

is approximately the probability

Pr{x1 ≤ X1 ≤ x1 +∆1, . . . , xp ≤ Xp ≤ xp +∆p}

if f (x1, . . . , xp) is continuous.
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Joint Moments

The joint moments of the joint distribution of random variables X1, . . . ,Xp

are defined as integers

E
[
X h1
1 · · ·X hp

p

]
=

∫ ∞

−∞
. . .

∫ ∞

−∞
xh11 · · · xhpp f (x1, . . . , xp)dx1 . . .dxp.

where ki ≥ 0 for all i = 1, . . . , p.
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. . . . . .

Marginal Distributions (two variables)

Given the cdf of two random variables X , Y as being F (x , y), the marginal
cdf of X is

F (x) = Pr{X ≤ x} = Pr{X ≤ x ,Y ≤ ∞} = F (x ,∞).

Clearly, we have

F (x) =

∫ x

−∞

(∫ ∞

−∞
f (u, v)dv

)
du.

We call

f (u) =

∫ ∞

−∞
f (u, v)dv ,

say, the marginal density of X . Then

F (x) =

∫ x

−∞
f (u)du.
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Marginal Distributions (two variables)

In a similar fashion we define G (y) as the marginal cdf of Y and g(y) as
marginal density of Y , that is

G (y) =

∫ y

−∞

(∫ ∞

−∞
f (u, v)du

)
dv .

and

g(v) =

∫ ∞

−∞
f (u, v)du.
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. . . . . .

Marginal Distributions (p variables)

Given F (x1, . . . , xp) as the cdf of X1, . . . ,Xp, the marginal cdf of some of
X1, . . . ,Xp say, of X1, . . . ,Xr (r < p), is

F (X1, . . . ,Xr ) =Pr{X1 ≤ x1, . . . ,Xr ≤ xr}
=Pr{X1 ≤ x1, . . . ,Xr ≤ xr ,Xr+1 ≤ ∞, . . . ,Xp ≤ ∞}
=F (x1, . . . , xr ,∞, . . . ,∞).

The marginal density of X1, . . . ,Xr is∫ ∞

−∞
. . .

∫ ∞

−∞
f (x1, . . . , xr , ur+1 . . . , up)dur+1 . . . dup.

The marginal distribution and density of any other subset of X1, . . . ,Xp

are obtained in the obviously similar fashion.
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. . . . . .

Joint Moments

The joint moments of a subset of variables can be computed from the
marginal distribution; for example,

E
[
X h1
1 · · ·X hr

r

]
=E

[
X h1
1 · · ·X hr

r X 0
r+1 . . .X

0
p

]
=

∫ ∞

−∞
. . .

∫ ∞

−∞
xh11 · · · xhrr f (x1, . . . , xp)dx1 . . . dxp

=

∫ ∞

−∞
. . .

∫ ∞

−∞
xh11 · · · xhrr

[∫ ∞

−∞
. . .

∫ ∞

−∞
f (x1 . . . , xp)dxr+1 . . .dxp

]
dx1 . . .dxr

=

∫ ∞

−∞
. . .

∫ ∞

−∞
xh11 · · · xhrr f (x1, . . . , xr ) dx1 . . .dxr .
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. . . . . .

Statistical Independence

.
Definition
..

......

Two random variables X , Y with cdf F (x , y) are said to be independent if

F (x , y) = F (x)G (y),

where F (x) is the marginal cdf of X and G (y) is the marginal cdf of Y .

Two random variables X , Y with cdf F (x , y) are independent, then
the density of X , Y can be written as

f (x , y) = f (x)g(y),

where f (x) and g(y) are the marginal densities of X and Y
respectively.

Conversely, if f (x , y) = f (x)g(y), then F (x , y) = F (x)G (y).
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. . . . . .

Statistical Independence

The statistical independence of X and Y implies

Pr{x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2}

=

∫ y2

y1

∫ x2

x1

f (u, v)du dv

=

∫ y2

y1

f (u)du

∫ x2

x1

g(v)dv

=Pr{x1 ≤ X ≤ x2}Pr{y1 ≤ Y ≤ y2}.

.
Definition
..

......

We say X and Y are uncorrelated if

Cov(X ,Y ) , E[(X − E[X ])(Y − E[Y ])] = 0

⇐⇒ E[XY ] = E[X ]E[Y ].
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Independent ̸= Uncorrelated

Note that

X are Y are independent implies X are Y uncorrelated.

However,

X are Y are uncorrelated do NOT implies X are Y are independent.
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. . . . . .

Mutually Independence

.
Definition
..

......

If the cdf of X1, . . . ,Xp is F (x1, . . . , xp), the set of random variables is said
to be mutually independent if

F (x1, . . . , xp) = F1(x1) . . .F (xp),

where Fi (xi ) is the marginal cdf of Xi , i = 1, . . . , p.

.
Definition
..

......

The set X1, . . . ,Xr is said to be independent of the set Xr+1, . . . ,Xp if

F (x1, . . . ,Xp) = F (x1, . . . , xr ,∞, . . . ,∞)F (∞, . . . ,∞, xr+1, . . . , xp).
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. . . . . .

Conditional Distributions

If A and B are two events such that the probability of A and B occurring
simultaneously is P(AB) and the probability of B occurring is P(B) > 0,
then the conditional probability of A occurring given that B has occurred is

P(AB)

P(B)
.
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. . . . . .

Conditional Distributions

Suppose the event A is X falling in the [x1, x2] and the event B is Y
falling in [y1, y2]. Then the conditional probability that X falls in [x1, x2],
given that Y falls in [y1, y2], is

Pr{x1 ≤ X ≤ x2 | y1 ≤ Y ≤ y2}

=
Pr{x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2}

Pr{y1 ≤ Y ≤ y2}

=

∫ x2
x1

∫ y2
y1

f (u, v)dv du∫ y2
y1

g(v)dv
.
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. . . . . .

Conditional Distributions

For y such that g(y) > 0, we define Pr{x1 ≤ X ≤ x2 | Y = y} as the
probability that X lies between x1 and x2 given that Y is y . Then

Pr{x1 ≤ X ≤ x2 | Y = y} =

∫ x2

x1

f (u | y)du,

where f (u | y) = f (u, y)

g(y)
.

For given y , f (· | y) is a density function and is called the conditional
density of X given y .

If X and Y are independent, we have f (x | y) = f (x).
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. . . . . .

Conditional Distributions

In the general case of X1, . . . ,Xp with cdf F (X1, . . . ,Xp), the conditional
density of X1, . . . ,Xr , given Xr+1 = xr+1, . . . ,Xp = xp is

f (x1, . . . , xp)∫∞
−∞ · · ·

∫∞
−∞ f (u1, . . . , ur , xr+1, . . . , xp)

du1 · · · dur .
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. . . . . .

Transformation of Variables

Let the density of p dimensional random vector x = [x1, . . . , xp]
⊤ be f (x).

Consider the random vector p dimensional random vector y = [y1, . . . , yp]
⊤ such

that yi = ui (x) for i = 1, . . . , p. Let the density function of y be g(y).

Assume the transformation u(x) = [u1(x), . . . , up(x)]⊤ : Rp → Rp from the space
of x to the space of y is smooth and one-to-one.

Then we have f (x) = g(u(x))| det(J(x))| where

J(x) =



∂u1(x)

∂x1

∂u1(x)

x2
· · · ∂u1(x)

∂xp

∂u2(x)

∂x1

∂u2(x)

∂x2
· · · ∂u2(x)

∂xp
...

...
. . .

...
∂up(x)

∂x1

∂up(x)

∂x2
· · · ∂up(x)

∂xp


.
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. . . . . .

Transformation of Variables

Similarly, we also have g(y) = f (u−1(y))| det(J−1(y))| where

J−1(y) =



∂u−1
1 (y)

∂y1

∂u−1
1 (y)

∂y2
· · ·

∂u−1
1 (y)

∂yp

∂u−1
2 (y)

∂y1

∂u−1
2 (y)

∂y2
· · ·

∂u−1
2 (y)

∂yp
...

...
. . .

...
∂u−1

p (y)

∂y1

∂u−1
p (y)

∂y2
· · ·

∂u−1
p (y)

∂yp


.
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. . . . . .

Random Matrix

A random matrix

Z =


z11 z12 . . . z1n
z21 z22 . . . z2n
...

. . . . . .
...

zm1 zm2 . . . zmn

 ∈ Rm×n

is a matrix of random variables z11, . . . , zmn.
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. . . . . .

Random Matrix

We define

E[Z] =


E[z11] E[z12] . . . E[z1n]
E[z21] E[z22] . . . E[z2n]

...
. . . . . .

...
E[zm1] E[zm2] . . . E[zmn].

 ∈ Rm×n
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Random Vector and Mean Vector

For random vector

x =


x1
x2
...
xp

 ∈ Rp,

the expected value

E[x] =


E[x1]
E[x2]
...

E[xp]

 ∈ Rp,

is the mean or mean vector of x.

We shall usually denote the mean vector E[x] by µ.
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. . . . . .

Random Vector and Covariance Matrix

For random vector x =


x1
x2
...
xp

 and its mean vector µ =


µ1

µ2
...
µp

, the
expected value of the random matrix (x− µ)(x− µ)⊤ is

Cov(x) = E
[
(x− µ)(x− µ)⊤

]
,

the covariance or covariance matrix of x.

...1 The i-th diagonal element of this matrix, E
[
(xi − µi )

2
]
, is the

variance of xi .
...2 The i , j-th off-diagonal element (i ̸= j), E[(xi − µi )(xj − µj)] is the
covariance of xi and xj .
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. . . . . .

Random Vector and Covariance Matrix

Note that

Cov(x) =E
[
(x− µ)(x− µ)⊤

]
=E

[
xx⊤ − µx⊤ − xµ⊤ + µµ⊤

]
=E

[
xx⊤

]
− E

[
µx⊤

]
− E

[
xµ⊤]+ E[µµ⊤]

=E
[
xx⊤

]
− µE

[
x⊤

]
− E [x]µ⊤ + µµ⊤

=E
[
xx⊤

]
− µµ⊤ − µµ⊤ + µµ⊤

=E
[
xx⊤

]
− µµ⊤,

where we have used the following lemma:
.
Lemma
..

......

If Z is an m× n random matrix, D is a fixed l ×m real matrix, E is a fixed
n × q real matrix, and F is a fixed l × q real matrix, then

E[DZE+ F] = DE[Z]E+ F.
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. . . . . .

Univariate Normal Distribution

A random variable X is normally distributed with mean µ and standard
deviation σ > 0 can be written in the following notation

X ∼ N (µ, σ).

The probability density function of univariate normal distribution is

f (x) =
1

σ
√
2π

exp

(
−(x − µ)2

2σ2

)
.

The standard normal distribution is a normal distribution with a mean of 0
and standard deviation of 1.
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. . . . . .

The Central Limit Theorem

The sum of many random variables will have an approximately normal
distribution.

Let X1, . . . ,Xn be independent and identically distributed random variables
with the same arbitrary distribution, mean µ, and variance σ2.

Let X̄n = 1
n

∑n
i=1 Xi , then the random variable

Z = lim
n→∞

√
n

(
X̄n − µ

σ

)
is a standard normal distribution.

What about multivariate case?
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Normal Distribution
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Multivariate Normal Distribution

The multivariate normal distribution of a p-dimensional random vector
x = [x1, . . . , xp]

⊤ can be written in the following notation:

x ∼ Np(µ,Σ)

or to make it explicitly known that x is p-dimensional.

x ∼ N (µ,Σ),

with p-dimensional mean vector

µ = E[x] =

E[x1]...
E[xp]

 ∈ Rp

and covariance matrix

Σ = E
[
(x− µ)(x− µ)⊤

]
∈ Rp×p.
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. . . . . .

Multivariate Normal Distribution

The density function of univariate normal distribution is

f (x) =
1

σ
√
2π

exp

(
−(x − µ)2

2σ2

)
,

where µ is the mean and σ2 is the variance with σ > 0.

The density function of non-singular p-dimensional multivariate normal
distribution is

f (x) =
1√

(2π)p det(Σ)
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
,

where µ ∈ Rp is the mean and Σ ≻ 0 is the p × p covariance matrix.
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. . . . . .

Multivariate Normal Distribution

The density function of non-singular p-dimensional multivariate normal
distribution is

f (x) =
1√

(2π)p det(Σ)
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
,

where µ ∈ Rp is the mean and Σ ≻ 0 is the p × p covariance matrix.

When the covariance matrix Σ is singular, we call the distribution is
singular (degenerate) normal distribution and we cannot write its density
function.

We first focus on the case of Σ ≻ 0.
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How to obtain the pdf of multivariate normal distribution?

We generalize the form of pdf for univariate normal distribution

f (x) =
1

σ
√
2π

exp

(
−(x − µ)2

2σ2

)
,

to the multivariate case

f (x) = K exp

(
−1

2
(x− b)⊤A(x− b)

)
,

where A is symmetric positive definite.

We can verify that if E[x] = µ and Cov[x] = Σ, then

K =
1√

(2π)p det(Σ)
, b = µ, A = Σ−1.
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. . . . . .

How to obtain the pdf of multivariate normal distribution?

We first show

K =

√
det(A)√
(2π)p

by considering the random vector

y = C−1(x− b) ∈ Rp,

where C ∈ Rp×p satisfies C⊤AC = I.
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. . . . . .

How to obtain the pdf of multivariate normal distribution?

Then, we show b = µ and A = Σ−1 by using the following lemma.
.
Lemma
..

......

...1 If Z is an m × n random matrix, D is an l ×m real matrix, E is an
n × q real matrix, and F is an l × q real matrix, then

E[DZE+ F] = DE[Z]E+ F.

...2 If y = Dx+ f ∈ Rl , where D is an l ×m real matrix, x ∈ Rm is a
random vector, then

E[y] = DE[x] + f

and

Cov[y] = DCov[x]D⊤.
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. . . . . .

Multivariate Normal Distribution

If the density of a p-dimensional random vector x is

K exp

(
−1

2
(x− b)⊤A(x− b)

)
,

where A ∈ Rp×p is symmetric positive definite. Then the expectation of x
is b and its covariance matrix is A−1.

Conversely, given a vector µ ∈ Rp and a positive definite matrix
Σ ∈ Rp×p, there is a multivariate normal density

n(x | µ,Σ) =
1√

(2π)p det(Σ)
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
.
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. . . . . .

Correlation Coefficient

We consider the bivariate normal distribution x ∼ N (µ,Σ), where

x =

[
x1
x2

]
, µ =

[
µ1

µ2

]
and Σ =

[
σ11 σ12
σ21 σ22

]
.

The covariance matrix can be written as

Σ =

[
σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

]
where σ2

1 is the variance of x1, σ
2
2 is the variance of x2 and ρ is the

correlation between x1 and x2.

We can verify that −1 < ρ < 1 if Σ ≻ 0 and

Σ−1 =
1

1− ρ2


1

σ2
1

− ρ

σ1σ2

− ρ

σ1σ2

1

σ2
2


Lecture 02 (Fudan University) MATH 620156 38 / 40



. . . . . .

Correlation Coefficient

The density of such normal distribution is constant on ellipsoids

(x− µ)⊤Σ−1(x− µ) = c

for every positive value of c.

We transform coordinates by yi = (xi − µi )/σi for i = 1, 2, then

1

1− ρ2
(
y21 − 2ρy1y2 + y22

)
= c .
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. . . . . .

Correlation Coefficient

We transform coordinates by yi = (xi − µi )/σi for i = 1, 2, then

1

1− ρ2
(
y21 − 2ρy1y2 + y22

)
= c .

The intercepts on the y1-axis and y2-axis are equal.
...1 If ρ > 0, the major axis is along the 45◦ line with a length of
2
√

c(1 + ρ), and the minor axis has a length of 2
√

c(1− ρ).
...2 If ρ < 0, the major axis is along the 135◦ line with a length of
2
√

c(1− ρ), and the minor axis has a length of 2
√

c(1 + ρ).
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