Homework 1

Deadline: April 9, 2023

1. For any $\mathbf{A} \in \mathbb{S}^{n}, \mathbf{x} \in \mathbb{R}^{n}$ and $\mathbf{y} \in \mathbb{R}^{n}$, prove that $\mathbf{x}^{\top} \mathbf{A} \mathbf{y}=\mathbf{y}^{\top} \mathbf{A} \mathbf{x}$.
2. Prove that for any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, the column rank of \mathbf{A} is equal to the row rank of \mathbf{A}.
3. For $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$, prove that $\|\mathbf{A B}\|_{F} \leq\|\mathbf{A}\|_{F}\|\mathbf{B}\|_{F}$.
4. Suppose $\mathbf{A} \in \mathbb{R}^{n \times n}$ has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Prove the following statements
(a) $\operatorname{tr}(\mathbf{A})=\sum_{i=1}^{n} \lambda_{i}$,
(b) $\operatorname{det}(\mathbf{A})=\prod_{i=1}^{n} \lambda_{i}$.
5. Prove the SVD always exists for any $\mathbf{A} \in \mathbb{R}^{m \times n}$. (Hint: Using spectral decomposition theorem)
6. Given the symmetric matrix

$$
\mathbf{N}=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{B}^{\top} & \mathbf{D}
\end{array}\right]
$$

with non-singular \mathbf{A} and let $\mathbf{S}=\mathbf{D}-\mathbf{B}^{\top} \mathbf{A}^{-1} \mathbf{B}$. Prove that
(a) $\mathbf{N} \succ \mathbf{0} \Longleftrightarrow \mathbf{A} \succ \mathbf{0}$ and $\mathbf{S} \succ \mathbf{0}$.
(b) If $\mathbf{A} \succ \mathbf{0}$, then $\mathbf{N} \succeq \mathbf{0} \Longleftrightarrow \mathbf{S} \succeq \mathbf{0}$.

